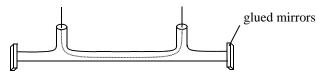
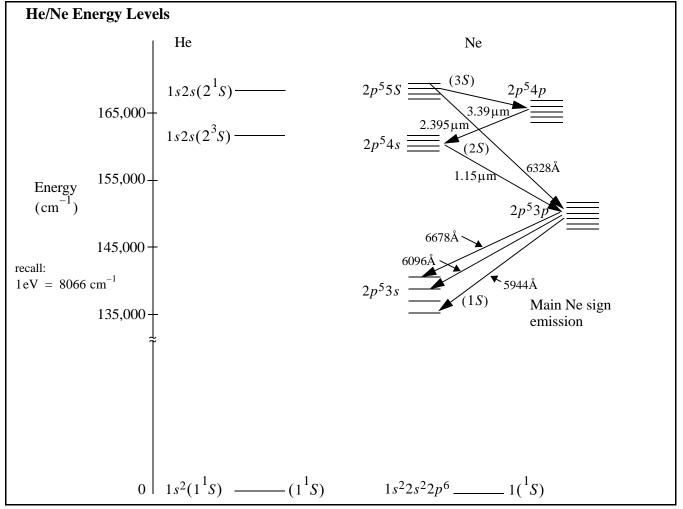
Lecture 18

Various laser types

Laser pumping processes:

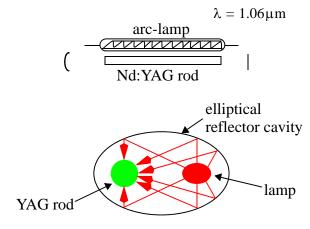

Electrons: Gas discharge or electron beam

Optical: a) incoherent – flashlamp, arc lamp, solar

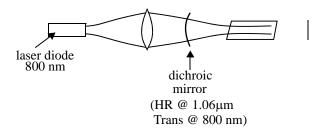

b) coherent – another laser

Electrical current: Semiconductor diode laser

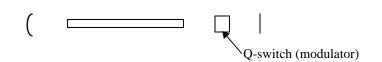
Gas discharge laser construction



- Ne excited states $1s^22s^22p^53s$, $1s^22s^22p^53p$, $1s^22s^22p$



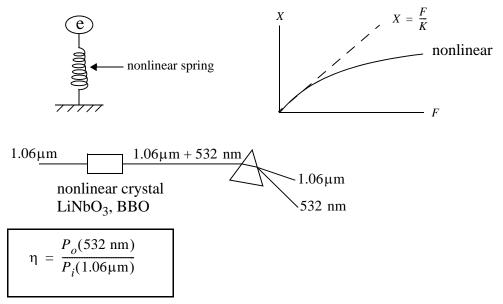
Optically pumped lasers


Nd:YAG laser

Diode pumping

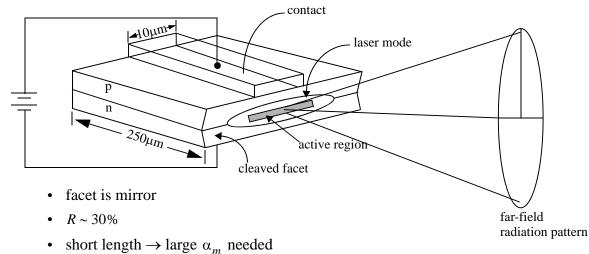
Q-switching

Upper-level lifetime in Nd:YAG is ~ 100 µsec


- 1. Modulator has low transmission
- 2. Population builds up in upper state
- **3.** Inversion density >> threshold, but no lasing
- 4. Modulator switches to high transmission
- 5. Laser action builds up rapidly, energy stored is released in a giant pulse

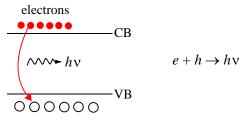
Second harmonic generation SHG

"Nonlinear" crystal – Electron binding is nonlinear

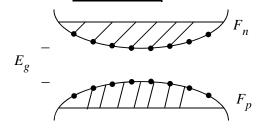

When such a system is driven by a sinusoidal signal $sin(\omega t)$, the response contains harmonics: $sin(2\omega t), \ldots$. These can radiate under suitable conditions

Conversion efficiency:

 $\eta > 70\%$ can be obtained.


Diode Lasers

- short length \rightarrow large α_m is
- Forward-biased pn diode
 - Active area ~ 40μ m × 250μ m × ~ 1 μ m
 - Typical current drive: 15 mA \rightarrow Current density across junction ~ 1 KA/cm² !
 - Typical voltage ~ 2 V \rightarrow 30mW input power
 - Typical overall efficiency ~ 50%, 15mW output!
 - Because of the small size, the electrical capacitance is small and the device can be modulated at frequencies > 10 GHz


<u>Atoms?</u> – Electrons and holes

This is the big difference with all other lasers. Electrons and holes are spread out over the whole crystal:

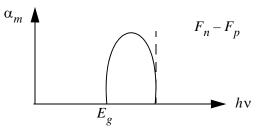
Optical transitions in semiconductors

Conservation of momentum $k_e = k_h$ – not possible in indirect gap semiconductor

Pauli exclusion principle: Only 2 electrons can occupy each k – state. This gives rise to "band-filling."

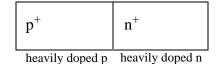
"Pump" high density of electrons and holes into same region.

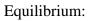
 F_n, F_p :quasi-Fermi levels

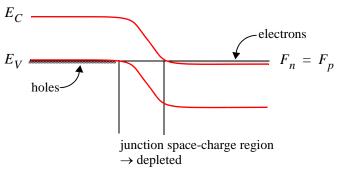

 F_n :energy of highest occupied electron state

 F_n :energy of lowest hole state

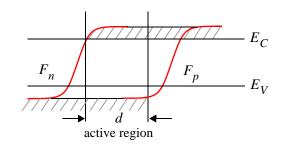
Inversion condition:

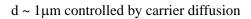

pondition:
$$F_n - F_p > E_g$$

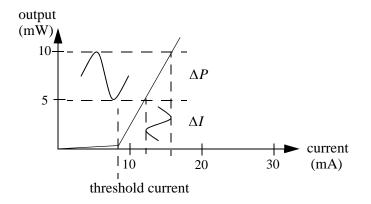

Equilibrium:
$$F_n = F_p \cong E_g/2$$



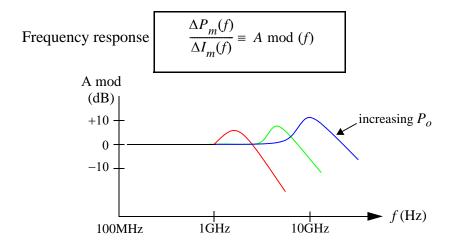
How to achieve inversion:


p-n Junction





Forward bias:



Modulate current \rightarrow modulate output

Lecture 18

Increasing $P_o \rightarrow$ increasing stimulus emission rate \rightarrow faster discharge of jn capacitance