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Lecture 20

DIFFRACTION THEORY OF A LENS
We have previously seen that light passing through a lens experiences a phase delay given by:

   (neglecting the constant phase)

The focal length, f  is given by:

    The “lens makers formula”

The transmission function is now:

This is the paraxial approximation to the spherical phase

Note:  the incident plane-wave is converted to a spherical wave converging to a point at f  behind the
lens (f  positive) or diverging from the point at f  in front of lens (f  negative). 

Diffraction from the lens pupil

Suppose the lens is illuminated by a plane wave, amplitude A.  The lens “pupil function” is .

The full effect of the lens is  

We now use the Fresnel formula to find the amplitude at the “back focal plane”  z = f

 

The phase terms that are quadratic in  cancel each other.
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(A)

This is precisely the Fraunhofer diffraction pattern of !  Note that a large z  criterion does not apply

here. 

The focal plane amplitude distribution is a Fourier transform of the lens pupil function P(), multi-
plied by a quadratic phase term.  However, the intensity distribution is exactly

Example:  a circular lens, with radius w  

                       

let       

The spot diameter is  

         paraxial approximation

The “Rayleigh” resolution of the lens is .

 For a large , 
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INTERFERENCE

[Reading assignment: Hecht 9.1, 9.3 (to p. 396 only), 9.4, 9.7.2, 9.8.2, 9.8.3]

Interference occurs when light from different sources or different paths are superimposed.  As an elec-
tromagnetic wave, when two waves superimpose, it is the electric field amplitudes that add.

Let the two sources radiate plane waves so that

At , we add the fields

The intensity is generally what is detected

where the average is a time average over detector response time,

When , the  terms average out

If , then we get an interference:
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The intensity observed shows maxima + minima as the path length difference  varies

[assumes phase factors do not vary ] This gives rise to constructive and destructive interfer-

ence. The phase difference is .

Young’s two-slit interference experiment

Michelson interferometer

Used for distance measuring. As  moves, we count cycles using the detector. With good S/N ratio

and a stable laser, movement as small as  (~ 5A!) can be measured. Large movement can be
measured with this accuracy. Such interferometers are very useful for very precise servo control of
positioning systems.
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Mach-Zender

This interferometer can be used for measuring material properties. If the index of refraction of the
sample varies, then the phase difference varies and the intensity at  varies. As an example, one can
determine the temperature dependence of the index of refraction   for air or other gases.

Sagnac interferometer (modified Mach-Zender)

By using a spool of fiber instead of discrete mirrors, a very stable arrangement can be made and sen-
sitivity is increased by , the number of turns of fiber on the spool. This is called the “fiber-ring
gyro,” very popular in inertial navigation.
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If the interferometer is rotating
clockwise, the clockwise light has a
longer time-of-flight than the oppo-
site direction.
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