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Lecture 5

Thin Lens Model
We now construct our model for the thin lens in air. Lens index is . We will find the imaging proper-

ties of the thin lens by using the previous results for a single spherical surface and applying them twice
- once for each of the two surfaces of the lens.

Use Eq. (4.12) for first surface:  , , 

     (5.1)

We get a virtual object at 

Now consider the rays travelling inside the lens from the virtual object. Apply spherical surface law
now to the second surface. This time , , ,

        (5.2)

The thin lens approximation is that the lens thickness is negligible, so that . Using this in Eq

(5.1), then substituting in Eq. (5.2),

(5.3)

This is the Gaussian lens law, with the focal length identified as:

     (5.4)

This is called the lensmaker’s equation.
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We conclude that a lens with 2 spherical surfaces satisfies the Gaussian lens law, but only under 2
important approximations

• Paraxial approximation

• Thin-lens approximation

Thick lens or compound lens systems

[Reading assignment: Hecht 6.1]

Any symmetric optical system consisting of lenses and spaces can be generalized.

Light rays entering from the left, parallel to the optic axis, come to a focus, at the “second focal point”

Now, we take the rays entering the system and those emerging from the system and extend them. They
intersect on a plane called the “Second principal plane”. Similarly, the first focus and “first principal
plane” are defined for rays emerging from the system parallel to the axis, which all emanate from a
point.  

We define  as the distance from the second principal plane to the second focal point. Similarly we

define  as the distance from the first principal plane to the first focal point. For a system immersed in

air (same index on both sides), . 
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With these definitions, the Gaussian lens law applies as follows:

With this geometry, all other relations now apply:

Wave optics of lenses
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At a given z-plane, the spherical wave has constant phase around circles. The form of the spherical

wave is  for a spherical wave converting to the point  on the axis. A lens modifies

the wave front, for example from planar to spherical.

How does this happen? 

Optical path length:
Optical waves travel more slowly in the glass since . In glass, the wave is delayed by an amount
as if it travelled a distance  in free space. If  [or ] then the delay varies with
(x,y) so the wavefront gets distorted.

We can analyze the lens in terms of its phase-delay. The light propagates in the glass as
 , where  is the phase delay.

In propagating from plane  to , the light travels a distance  in the glass and a distance

 in air, where  is the thickness at the thickest part of the lens. The phase delay depends on

:
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We can calculate , assuming spherical surfaces. Recall the sign convention for the surface radii: 

From this diagram, we can readily obtain

In the paraxial approximation , so

, thus

This gives a phase delay:

 Apart from the constant delay , the phase delay is:

A plane wave incident on the lens has a constant phase. After passing through the lens, the phase is
given above. This has the form of a spherical wave, converging to a point at a distance , where
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,

 is the focal length of the lens. This expression is identical to what we found from the ray optics anal-
ysis. 
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