
EECS120 - Fall 2003
Homework No. 3 Solutions

Questions can be asked in ucb.class.ee120 or in office hours

Problem 3.1 Book Problems from Lee and Varaiya, chapter 10.
Problems: 2,3,5
See attached images

Problem 3.2 Linear Algebra Review

a. What is the determinant of aI where I is the n×n identity matrix? What is the trace?

The determinant is an and the trace is na.

b. What are the eigenvalues and eigenvectors of the following matrices: 1 2 3
4 5 6
7 8 9

 ,

 1 0 0
0 5 6
0 8 9

 ,

 1 3 2
2 1 3
3 2 1


For the first matrix, we have:

λ0 = 0, ~v0 =

 1
−2
1


The zero eigenvalue and eigenvector should have been able to be found by inspection.
The other two involve a little more work.

λ1 =
15

2
+

3
√

33

2
, ~v1 =

 3
√

33
22

− 1
2

3
√

33
44

+ 1
4

1



λ2 =
15

2
− 3

√
33

2
, ~v2 =

 −3
√

33
22

− 1
2

−3
√

33
44

+ 1
4

1


For the second matrix, we immediately see that we have this pair:

λ0 = 1, ~v0 =

 1
0
0


The others must be from the two dimensional subspace orthogonal to this one and we
get:

λ1 = 7 + 2
√

13, ~v1 =

 0√
13−1
4

1


1



λ2 = 7− 2
√

13, ~v1 =

 0
−
√

13−1
4

1


In both of the above two matrices, we avoided having to deal with any third degree
equations by noticing one eigenvalue/eigenvector pair immediately.

The third matrix is circulant and so the eigenvectors are the complex exponentials and
we get:

λ0 = 6, ~v0 =

 1
1
1


λ1 = −3

2
+

√
3

2
j, ~v1 =

 1

ej 2π
3

e−j 2π
3



λ2 = −3

2
−
√

3

2
j, ~v2 =

 1

e−j 2π
3

ej 2π
3


c. Consider vectors in three-dimensional space. Let H be a system that takes an incoming

vector, projects it into the plane that is perpendicular to the direction [111]T , and
proceeds to rotate the resulting vector 90 degrees around the Z axis. Is H linear?
Invertible? Representable as a matrix? (If so, what is the matrix representation?)

Projections and rotations are both linear and hence their composition is linear as well.
This operation can not be invertible since the projection loses information along the
direction [1, 1, 1]T . Finally, all linear operations on finite dimensional vector spaces
are representable by matrices and so is this one. To find the matrix, we just take the
three standard basis vectors manually through the transformation to get the columns
of the matrix. Alternatively, we can write matrices for the operations of projection
and rotation and just multiply them together.

A projection involves subtracting out any component that is orthogonal to the subspace
being projected to. As such, we need to project the vector onto the unit vector in the
direction [1, 1, 1]T which means acting on it be the row vector ~pT = 1√

3
[1, 1, 1] and then

multiplying the result by the unit vector ~p = 1√
3
[1, 1, 1]T . Multiplying things together

and writing the entire operation as a matrix gives us:

P = I − ~p~pT =

 2
3

−1
3
−1

3

−1
3

2
3

−1
3

−1
3
−1

3
2
3


Notice that rotation 90 degrees around the Z axis just replaces Y coordinate with the
X one, while replacing the X coordinate with the negative of the Y one, and leaves
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the Z coordinate unchanged. So we can immediately write the rotation matrix as:

R =

 0 −1 0
1 0 0
0 0 1


Then the total transformation:

H = RP =

 1
3

−2
3

1
3

2
3

−1
3
−1

3

−1
3
−1

3
2
3


Since P is singular, we can see that H is as well.

d. Let the n × n real matrix M be such that it has n distinct eigenvalues λi. Show that
there exists a coordinate system in which the operation of M can be represented by a
diagonal matrix.

Just use the coordinate system that has the eigenvectors of M as its basis. Since there
are n distinct eigenvalues λi, there must also exist n distinct unit eigenvectors ~vi such
that M~vi = λi~vi. Furthermore, all of these eigenvectors are linearly independent.

We can show linear independence by using a proof by contradiction. Suppose that
they were linearly dependent, then we would have a k for which ~vk =

∑
i6=k αi~vi where

all the αi that are not zero correspond to a linearly independent set of vectors. If
λk = 0, then we can solve the equation above to get another vector on the left hand
side that corresponds to a nonzero λk. Assume now that we have done so and λk 6= 0.
Then, λk~vk = M~vk =

∑
i6=k αiM~vi =

∑
i6=k αiλi~vi implies ~vk =

∑
i6=k αi

λi

λk
~vi. Thus∑

i6=k αi
λi

λk
~vi =

∑
i6=k αi~vi. This implies that 0 =

∑
i6=k αi(1− λi

λk
)~vi and if we focus on

the non-zero αi, then we have shown that the corresponding ~vi are linearly dependent
which contradicts the initial assumption that the nonzero αi match up to a linearly
independent set of vectors.

Since the eigenvectors are linearly independent and there are n of them, they form a
basis and hence a coordinate system for the entire n-dimensional vector space. In this
coordinate system, the operation of M leaves the coordinate vector ~vi unchanged except
for a scaling by λi. Thus it is represented by the diagonal matrix diag(λ0, λ1, . . . , λn−1).

Problem 3.3 Finite domains without wrap-around
Consider signals on the set {0, 1, 2, . . . , n − 1}. Suppose that we interpret delay/shift to

mean that if a signal is shifted by +i, then the first i values will be set to zero, while the first
n− i values will become the last n− i values. Similarly, if a signal is shifted by −i, then the
last i values will be set to zero while the last n− i values will become the first n− i values.

a. Prove that if L is an LTI system, then L is just a scalar gain.
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We already know that as a linear system operating on a finite dimensional vector space,
L is representable by a matrix (see the next problem for a full discussion of this) where
the columns represent the responses of L to impulses at various times.

Let ei represent the impulse signal with the impulse at time i and li represent the
response of of L to that signal. Then Dn−1e0 = en−1 implies by time invariance that
ln−1 = Len−1 = LDn−1e0 = Dn−1Le0 = Dn−1l0. But by the property of the shift
without wrap around [Dn−1l0](t) = 0 for every t < n− 1. Thus, the final column in L
must have zeros in all but the last position.

Now, notice that li = D−(n−1−i)ln−1 from time invariance and thus li(t) = 0 for t < i
since ln−1 has zeros in all but the last position. And also li(t) = 0 for t > i since these
are zero from the shift without wrap around. Finally li(i) = ln−1(n− 1) and thus the
matrix L is just ln−1(n− 1)I and thus the system is just a scalar gain.

b. (Bonus) Characterize the entire class of time-invariant systems.

All time invariant systems must be memoryless — they are just the same function
applied to the signal value at each time i.

Problem 3.4 Finite domains with wrap-around
Consider the domain Zn (the integers mod n > 0). Here we interpret delay to mean that

[Dτx](t) = x(t− τ mod n).
Consider n = 3.

a. Show that the set of real-valued signals on this domain is representable by vectors in
3-dimensional space using the standard basis vectors.

We know that n = 3,∀τ ∈ Z, x(t−3τ mod n) = x(t), so x(0), x(1), and x(2) completely
describe our signal. We can represent this signal with the following vector: x(0)

x(1)
x(2)

 = x(0)

 1
0
0

 + x(1)

 0
1
0

 + x(2)

 0
0
1


From this, we see that such a signals in this domain can be represented in 3-dimensional
space by the standard basis vectors.

b. Show that all linear systems that map real-valued signals on this domain to real-valued
signals on this domain are representable by real 3× 3 matrices.

In part a, we established that we can represent the set of real-valued signals on this
domain with the standard basis vectors. That is, all signals on this domain have the
following form:  x0

x1

x2

 = x0

 1
0
0

 + x1

 0
1
0

 + x2

 0
0
1

 ,
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where x0 = x(0), x1 = x(1), and x2 = x(2).

Now consider a linear system L that maps real-valued signals on this domain to real-
valued signals on this domain. By properties of linearity, we see that:

L

 x0

x1

x2

 = x0L

 1
0
0

 + x1L

 0
1
0

 + x2L

 0
0
1


Since L maps to real-valued signals on this domain, the output of L can also be rep-
resented as a column vector in 3-dimensional space. Using this fact, consider the
following 3-by-3 matrix: L

 1
0
0

 L

 0
1
0

 L

 0
0
1

 
Multiplying our signal by this matrix produces the same result as the linear system L.
Thus, we can represent linear systems in the form of L with 3-by-3 matrices.

c. What is the class of matrices that correspond to LTI systems?

Time invariance implies that the response of the system to an impulse at time 1 is the
same as the impulse response delayed by one unit. Similarly for an impulse at time 2.
Thus the class of matrices corresponding to LTI systems are circulant matrices, which
have the following form for real-valued signals on this domain: l0 l2 l1

l1 l0 l2
l2 l1 l0


Here you can see the cyclical shifts across the columns.

d. Show that there exists a complex coordinate system in which every LTI system is rep-
resentable by a diagonal matrix.

This amounts to diagonalizing the matrix found in part d. We do this by finding
eigenvectors of the matrix and using those as the basis vectors for the new coordinate
system. The first eigenvector is relatively easy to find, which has 1 in each component: l0 l2 l1

l1 l0 l2
l2 l1 l0

 1
1
1

 = (l0 + l2 + l1)

 1
1
1


Recall that the eigenvectors in Z4 are complex exponentials. So let’s try the following
vectors: l0 l2 l1

l1 l0 l2
l2 l1 l0

 1
ej2π/3

ej4π/3

 =

 l0 + l2e
j2π/3 + l1e

j4π/3

l0e
j2π/3 + l2e

j4π/3 + l1
l0e

j4π/3 + l2 + l1e
j2π/3

 = (l0+l2e
j2π/3+l1e

j4π/3)

 1
ej2π/3

ej4π/3

 ,
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 l0 l2 l1
l1 l0 l2
l2 l1 l0

 1
ej4π/3

ej8π/3

 =

 l0 + l2e
j4π/3 + l1e

j8π/3

l0e
j4π/3 + l2e

j8π/3 + l1
l0e

j8π/3 + l2 + l1e
j4π/3

 = (l0+l2e
j4π/3+l1e

j8π/3)

 1
ej4π/3

ej8π/3


We now have three eigenvectors and their corresponding eigenvalues, so we can diago-
nalize the matrix.

 l0 l2 l1
l1 l0 l2
l2 l1 l0

 = V HV −1 =

 1 1 1
1 ej2π/3 ej4π/3

1 ej4π/3 ej8π/3

 f0 0 0
0 f1 0
0 0 f2

 1/3 1/3 1/3
1/3 e−j2π/3/3 e−j4π/3/3
1/3 e−j4π/3/3 e−j8π/3/3

 ,

where f0 = (l0 + l2 + l1), f1 = (l0 + l2e
j2π/3 + l1e

j4π/3), and f2 = (l0 + l2e
j4π/3 + l1e

j8π/3).
Here, V −1 transforms vectors to the new coordinate system, H is the resulting diagonal
matrix corresponding to the LTI system, and the columns of V are the basis vectors
used to represent this system.

e. Represent D1 and D2 in both the coordinate system of (c) and (d).

D1 and D2 are both delays mod 3, so we can represent them as follows:

D1 =

 0 0 1
1 0 0
0 1 0

 ,

D2 =

 0 1 0
0 0 1
1 0 0


In the diagonal coordinate system, they are as follows:

HD1 = V −1D1V =

 1 0 0
0 e−j2π/3 0
0 0 e−j4π/3

 ,

HD2 = V −1D2V =

 1 0 0
0 ej2π/3 0
0 0 ej4π/3


f. Show explicitly that the coordinate system of part (d) is orthogonal. (i.e. the basis

vectors are all orthogonal to each other using the regular Euclidean inner product on
complex spaces.)

The regular Eucliden inner product on complex spaces of two vectors u and v is:

< u,v >= u∗ v ,
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where * denotes the complex conjugate of the transpose of u. The basis vectors of the
new coordinate system amount to the columns of matrix V , defined in part d. They
are:

u0 =

 1
1
1

 , u1 =

 1
ej2π/3

ej4π/3

 , u2 =

 1
ej4π/3

ej8π/3


Checking the following inner products confirms all the basis vectors are orthogonal:

< u0,u1 >= (1 + ej2π/3 + ej4π/3) = (1 +
−1

2
+ j

√
3

2
+
−1

2
− j

√
3

2
) = 0

< u0,u2 >= (1 + ej4π/3 + ej8π/3) = (1 +
−1

2
− j

√
3

2
+
−1

2
+ j

√
3

2
) = 0

< u1,u2 >= (1 + ej2π/3 + ej4π/3) = 0

g. Do all complex diagonal matrices in the coordinate system of (d) correspond to real
LTI systems? If not, which subset of the complex diagonal matrices correspond to real
LTI systems?

Not all complex diagonal matrices in the coordinate system of (d) correspond to real
LTI systems. After all, even a complex circulant matrix would share the same eigen-
vectors and hence would give rise to a diagonal matrix in the transformed coordinates.

Recall the following definitions from part (d): f0 = (l0 + l2 + l1), f1 = (l0 + l2e
j2π/3 +

l1e
j4π/3), and f2 = (l0 + l2e

j4π/3 + l1e
j8π/3). Because l0,l2, and l1 are real-valued in a

real LTI system, the following must be real-valued:

f0 + f1 + f2

f0 + ej2π/3f1 + e−j2π/3f2

f0 + e−j2π/3f1 + ej2π/3f2

For this to happen, f0 must be real valued and f1 and f2 must be complex conjugates
of each other. To see this, write fk = rk + jik and notice that we have the following
constraints:

i0 + i1 + i2 = 0

i0 + sin(2π/3)r1 + cos(2π/3)i1 − sin(2π/3)r2 + cos(2π/3)i2 = 0

i0 − sin(2π/3)r1 + cos(2π/3)i1 + sin(2π/3)r2 + cos(2π/3)i2 = 0

Adding the second and third equations together cancels the real parts and gives us:

i0 + cos(2π/3)(i1 + i2) = 0
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combining with the first equation immediately gives us:

i0 = 0, (i1 + i2) = 0

Substituting into the second equation immediately gives us r1 = r2 which proves that
f0 is real and f1 = f ∗2 .

h. Give an LTI system that removes the DC offset of a signal, but otherwise leaves it
unchanged. Express it both in terms of the impulse response and the “frequency re-
sponse.”

Removing the DC offset in a signal eliminates its zero-frequency component. This

amounts to having an eigenvalue of 0 for

 1
1
1

. Since the remaining frequency com-

ponents remain unchanged, they have eigenvalues of 1. Thus, the matrix in (d)’s
coordinate system looks like this:  0 0 0

0 1 0
0 0 1


This means that an LTI system, expressed with our standard basis vectors, is as follows:

1

3

 2 −1 −1
−1 2 −1
−1 −1 2


From these matrices, we can get our impulse response and frequency response:

h(n) =

{
2/3 n = 0
−1/3 n = 1, 2

H(k) =


0 k = 0
1 k = 1
1 k = 2

i. Repeat parts d,e,f,g,h for n = 5, 6

For n = 5, we can use an approach similar to the n = 3 case to get the following:
l0 l4 l3 l2 l1
l1 l0 l4 l3 l2
l2 l1 l0 l4 l3
l3 l2 l1 l0 l4
l4 l3 l2 l1 l0

 = V5HV −1
5 =


1 1 1 1 1
1 ej2π/5 ej4π/5 ej6π/5 ej8π/5

1 ej4π/5 ej8π/5 ej12π/5 ej16π/5

1 ej6π/5 ej12π/5 ej18π/5 ej24π/5

1 ej8π/5 ej16π/5 ej24π/5 ej32π/5


8




f0 0 0 0 0
0 f1 0 0 0
0 0 f2 0 0
0 0 0 f3 0
0 0 0 0 f4

 1

5


1 1 1 1 1
1 e−j2π/5 e−j4π/5 e−j6π/5 e−j8π/5

1 e−j4π/5 e−j8π/5 e−j12π/5 e−j16π/5

1 e−j6π/5 e−j12π/5 e−j18π/5 e−j24π/5

1 e−j8π/5 e−j16π/5 e−j24π/5 e−j32π/5

 (d),

D1 =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 , D2 =


0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0



HD1 =


1 0 0 0 0
0 e−j2π/5 0 0 0
0 0 e−j4π/5 0 0
0 0 0 e−j6π/5 0
0 0 0 0 e−j8π/5

 ,

HD2 =


1 0 0 0 0
0 e−j4π/5 0 0 0
0 0 e−j8π/5 0 0
0 0 0 e−j12π/5 0
0 0 0 0 e−j16π/5

 (e),

(f) :< u0,u1 >=< u0,u2 >=< u0,u3 >=< u0,u4 >= 0

< u1,u2 >=< u1,u3 >=< u1,u4 >= 0

< u2,u3 >=< u2,u4 >= 0

< u3,u4 >= 0

(g) : f0+f1+f2+f3+f4, f0+f1e
j2π/5+f2e

j4π/5+f3e
j6π/5+f4e

j8π/5, f0+f1e
j4π/5+f2e

j8π/5+f3e
j12π/5+f4e

j16π/5,

f0+f1e
j6π/5+f2e

j12π/5+f3e
j18π/5+f4e

j24π/5, f0+f1e
j8π/5+f2e

j16π/5+f3e
j24π/5+f4e

j32π/5 ∈ <,

which implies that f0 is real and that the others are in complex conjugate pairs using
the identical arguments we used earlier.

(h) :

h(n) =

{
4/5 n = 0
−1/5 n = 1, 2, 3, 4

H(k) =


0 k = 0
1 k = 1
1 k = 2
1 k = 3
1 k = 4
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Likewise, for the n = 6 case:
l0 l5 l4 l3 l2 l1
l1 l0 l5 l4 l3 l2
l2 l1 l0 l5 l4 l3
l3 l2 l1 l0 l5 l4
l4 l3 l2 l1 l0 l5
l5 l4 l3 l2 l1 l0

 = V6HV −1
6 =


1 1 1 1 1 1
1 ej2π/6 ej4π/6 ej6π/6 ej8π/6 ej10π/6

1 ej4π/6 ej8π/6 ej12π/6 ej16π/6 ej20π/6

1 ej6π/6 ej12π/6 ej18π/6 ej24π/6 ej30π/6

1 ej8π/6 ej16π/6 ej24π/6 ej32π/6 ej40π/6

1 ej10π/6 ej20π/6 ej30π/6 ej40π/6 ej50π/6




f0 0 0 0 0 0
0 f1 0 0 0 0
0 0 f2 0 0 0
0 0 0 f3 0 0
0 0 0 0 f4 0
0 0 0 0 0 f5


1

6


1 1 1 1 1 1
1 e−j2π/6 e−j4π/6 e−j6π/6 e−j8π/6 e−j10π/6

1 e−j4π/6 e−j8π/6 e−j12π/6 e−j16π/6 e−j20π/6

1 e−j6π/6 e−j12π/6 e−j18π/6 e−j24π/6 e−j30π/6

1 e−j8π/6 e−j16π/6 e−j24π/6 e−j32π/6 e−j40π/6

1 e−j10π/6 e−j20π/6 e−j30π/6 e−j40π/6 e−j50π/6

 (d),

D1 =


0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 , D2 =


0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0



HD1 =


1 0 0 0 0 0
0 e−j2π/6 0 0 0 0
0 0 e−j4π/6 0 0 0
0 0 0 e−j6π/6 0 0
0 0 0 0 e−j8π/6 0
0 0 0 0 0 e−j10π/6

 ,

HD2 =


1 0 0 0 0 0
0 e−j4π/6 0 0 0 0
0 0 e−j8π/6 0 0 0
0 0 0 e−j12π/6 0 0
0 0 0 0 e−j16π/6 0
0 0 0 0 0 e−j20π/6

 (e),

(f) :< u0,u1 >=< u0,u2 >=< u0,u3 >=< u0,u4 >=< u0,u5 >= 0

< u1,u2 >=< u1,u3 >=< u1,u4 >=< u1,u5 >= 0

< u2,u3 >=< u2,u4 >=< u2,u5 >= 0

< u3,u4 >=< u3,u5 >= 0

< u4,u5 >= 0

(g) : f0 + f1 + f2 + f3 + f4 + f5, f0 + f1e
j2π/6 + f2e

j4π/6 + f3e
j6π/6 + f4e

j8π/6 + f5e
j10π/6,

f0 + f1e
j4π/6 + f2e

j8π/6 + f3e
j12π/6 + f4e

j16π/6 + f5e
j20π/6,
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f0 + f1e
j6π/6 + f2e

j12π/6 + f3e
j18π/6 + f4e

j24π/6 + f5e
j30π/6,

f0 + f1e
j8π/6 + f2e

j16π/6 + f3e
j24π/6 + f4e

j32π/6 + f5e
j40π/6,

f0 + f1e
j10π/6 + f2e

j20π/6 + f3e
j30π/6 + f4e

j40π/6 + f5e
j50π/6 ∈ <,

which again implies that f0 and f3 are real (since they always have real multipliers in
the above equations) and the others are complex conjugate pairs.

(h) :

h(n) =

{
5/6 n = 0
−1/6 n = 1, 2, 3, 4, 5

H(k) =



0 k = 0
1 k = 1
1 k = 2
1 k = 3
1 k = 4
1 k = 5

So in general, we have seen how things work though the examples above. All the cases
of n even are like Z4 and Z6 while the odd ones will behave like Z3 and Z5. For extra
credit, I encourage you to write up the solution for the general case of real signals on
Zn and LTI systems on them. The best writeup will get posted to the web. Use LaTeX
if you want it to look nice like this.

Problem 3.5 Suppose that x(t) is a discrete-time signal that is periodic with period T (pos-
itive integer). If y = Lx where L is an LTI system, is y guaranteed to be a periodic signal?
Why or why not?

Yes, it is guaranteed to be periodic. This can be seen in one way since all periodic discrete
time signals with period T can be represented by T -dimensional vectors and all LTI systems
correspond to T × T matrices. As a result, x(t) can be represented by ~x and the action of
the linear system L can be seen as ~y = L~x. Thus, the output y(t) must be represented by ~y
and is thus periodic with period T .

Understandably, the above explanation leaves something to be desired. Here is a way
of showing it directly using only the properties of Time Invariant systems. Let DkT be the
system that delays by kT .

y(t + kT ) = [DkT Lx](t)

= [LDkT x](t)

= [Lx](t)

= y(t)

and thus y is periodic. The key fact is just that x is periodic with period T and hence
DkT x = x.
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