
EECS120 - Fall 2003
Homework No. 4 Solutions

You are strongly urged to check your copy of the homework against the
solutions before the exam.

Questions can be asked in ucb.class.ee120 or in office hours

Problem 4.1 Book Problems from Lee and Varaiya, chapter 10.
Problems: 11, 13, 14, 15
See Attached Images

Problem 4.2 Projections and Least Squares.
This problem is designed to help you review your linear algebra by exploring the special

properties of the projection operation and see how it relates to the Discrete Fourier Transform
and Fourier Series.

a. One dimensional projections. Given an n-dimensional column vector ~v, derive a matrix
L that projects column vectors onto ~v. (i.e. If ~y = L~x, then ~y is the projection of ~x in
the direction of ~v.)

Simple trigonometry shows that the projection of ~x into the direction of ~v has length
‖~v‖ cos θ along the unit vector in the direction ~v where θ is the angle between ~v and ~x.

We know that ‖~v‖‖~x‖ cos θ =< ~v, ~x >= ~v∗~x, and also that unit vector in the direction
~v is just ~v

‖~v‖ . As such <~v,~x>
‖~v‖ gives the length of the desired projection. So the answer

as a vector is:

(
~v

‖~v‖
)
< ~v, ~x >

‖~v‖
= (

~v

‖~v‖2
)~v∗~x = (

~v~v∗

~v∗~v
)~x

So the matrix L = ~v~v∗

~v∗~v
.

b. You perform an experiment that yields a column vector of n measurements denoted by
~d. You believe this data to come from a physical process that should give measurements
of the form α~a where α is some unknown scalar gain parameter. In order to estimate
α, you decide to minimize the standard Euclidean norm of the error vector ~e = ~d−α~a
where α is the parameter you get to set.

Show that the optimal α gives rise to α~a being the projection of ~d onto the
direction given by ~a.

We follow the hint: Take the derivative of the squared norm of the error vector and
set it to zero. Then show that this is the global minimum.

The norm of the error vector is ‖~e‖. Because the norm is positive, and squaring is
strictly monotonic over a positive domain, any local extrema of ‖~e‖ must also corre-

spond to a local extrema of ‖~e‖2 = ~e∗~e = (~d− α~a)∗(~d− α~a) = ~d∗~d + α∗α~a∗~a− α~d∗~a−
α∗~a∗~d.

The complex vector case might be unsettling to some of you, so we will first work out
the solution in the real case. In that case, the conjugate transpose above is the same
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as the simple transpose and the derivative with respect to the single real parameter
α is 2α~aT~a− ~dT~a− ~aT ~d. Setting this to zero and solving for α gives the unique local
extremum of

α =
~dT~a + ~aT ~d

2~aT~a
=

~aT ~d + ~aT ~d

2~aT~a
=

~aT ~d

~aT~a

and thus

α~a = ~aα =
~a~aT

~aT~a
~d

which is the same as the projection derived earlier. To verify that this is indeed a
minimum and not a maximum, we can just take the second derivative and see that it
is always ~aT~a > 0.

With the real case in hand, we can move on to the complex case. Here, we can
not simply use the “complex derivative” since the Cauchy-Riemann equations are not
satisfied and so the “complex derivative” does not exist.1 Instead, we will just consider
the complex parameter α as a pair of real parameters αr, αi. Since we are just looking
for an extremal value, all that is necessary is for us to take the partial derivatives with
respect to the real and imaginary parts of α.

Writing out ‖~e‖2 in terms of the real and imaginary parts gives us:

‖~e‖2 = ~d∗~d + α∗α~a∗~a− α~d∗~a− α∗~a∗~d

= ~d∗~d + (α2
r + α2

i )~a
∗~a− αrRe(~d∗~a) + αiIm(~d∗~a)− αrRe(~a∗~d)− αiIm(~a∗~d)

= ~d∗~d + (α2
r + α2

i )~a
∗~a− 2αrRe(~a∗~d)− 2αiIm(~a∗~d)

= ~d∗~d + (α2
r~a

∗~a− 2αrRe(~a∗~d)) + (α2
i~a

∗~a− 2αiIm(~a∗~d))

Setting the partial derivatives equal to zero gives us the pair of equations:

2αr~a
∗~a− 2Re(~a∗~d) = 0

2αi~a
∗~a− 2Im(~a∗~d) = 0

Solving the above pair immediately gives us the unique complex

αr =
Re(~a∗~d)

~a∗~a

αi =
Im(~a∗~d)

~a∗~a

which can be expressed in more compact complex notation as

α =
~a∗~d

~a∗~a

1If you do not remember what these conditions are, do not worry. They just assure that the limit of
ε → 0 in the definition of the derivative exists in the sense that it does not depend on which direction in the
complex plane is used to have the complex ε → 0.
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and so

α~a = ~aα =
~a~a∗

~a∗~a
~d

which is the same as the projection we wanted.

c. Show that the error vector ~e is orthogonal to ~a.

To see this, we just calculate the inner product of ~e with ~a.

< ~a,~e > = ~a∗~e

= ~a∗~d− ~a∗~a~a∗

~a∗~a
~d

= ~a∗~d− ~a∗~d

= 0

d. Repeat part (b) above, but now your model for the measurements has two unknowns

(α, β) and is of the form α~a + β~b where ~a and ~b are linearly independent. What is the
choice of α and β that minimizes the norm of the error vector?

Now, we have two unknowns and

‖~e‖2 = (~d− α~a− β~b)∗(~d− α~a− β~b)

= ~d∗~d + α∗α~a∗~a− α~d∗~a− α∗~a∗~d + β∗β~b∗~b− β~d∗~b− β∗~b∗~d + α∗β~a∗~b + β∗α~b∗~a

= ~d∗~d + (α2
r~a

∗~a− 2αrRe(~a∗~d)) + (α2
i~a

∗~a− 2αiIm(~a∗~d))

+(β2
r
~b∗~b− 2βrRe(~b∗~d)) + (β2

i
~b∗~b− 2βiIm(~b∗~d))

+2(αrβr + αiβi)Re(~a∗~b) + 2(βiαr − αiβr)Im(~a∗~b)

Taking partial derivatives and setting to zero again gives rise to four linear equations:

αr~a
∗~a + βrRe(~a∗~b) + βiIm(~a∗~b) = Re(~a∗~d)

βr
~b∗~b + αrRe(~a∗~b) + αiIm(~b∗~a) = Re(~b∗~d)

αi~a
∗~a + βiRe(~a∗~b) + βrIm(~b∗~a) = Im(~a∗~d)

βi
~b∗~b + αiRe(~a∗~b) + αrIm(~a∗~b) = Im(~b∗~d)

written in more compact complex notation the above are just:

α~a∗~a + β~b∗~a = ~a∗~d

α~a∗~b + β~b∗~b = ~b∗~d

which we can rewrite in matrix form to give even more insight:[
~a∗~a ~b∗~a

~a∗~b ~b∗~b

] [
α
β

]
=

[
~a∗

~b∗

]
~d
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The above can be rewritten again by letting the complex matrix V = [~a,~b] and then
we have:

V ∗V

[
α
β

]
= V ∗~d

which can immediately be solved to give us[
α
β

]
= (V ∗V )−1V ∗~d

To see that this is the global minimum rather than the maximum, we can just notice
that it is the only local extreme point and the matrix of second partial derivatives is
clearly positive definite since ~a and ~b are linearly independent.

e. Show that the error vector from part (d) is orthogonal to both ~a and ~b and hence to the
entire subspace spanned by the two of them.

Use the notation we had at the end of (d). ~e = ~d − V

[
α
β

]
= ~d − V (V ∗V )−1V ∗~d =

(I−V (V ∗V )−1V ∗)~d. Now, any vector in the subspace spanned by ~a and~b can be written
as V ~u where ~u is 2-d complex column vector. To see orthogonality, we calculate:

< V ~u,~e > = ~u∗V ∗(I − V (V ∗V )−1V ∗)~d

= ~u∗(V ∗ − V ∗V (V ∗V )−1V ∗)~d

= ~u∗(V ∗ − V ∗)~d

= ~u∗0~d

= 0

f. Repeat part (d) for the case of a model with m linearly independent vectors ~ai and m
corresponding unknowns αi.

We follow the hint: Put the m column vectors ~ai into a matrix A and then collect all
the αi unknown parameters into a column vector ~x. Now the linear combination is
given by the matrix multiplication A~x and the error is ~d− A~x.

The norm squared is (~d∗−~x∗A∗)(~d−A~x) = ~d∗~d+~x∗A∗A~x−~x∗A∗~d− ~d∗A~x. Taking the
partial derivatives as we did earlier and setting it to zero will give rise to the complex
equation2:

2A∗A~x− 2A∗~d = 0

which has the unique solution
~x = (A∗A)−1A∗~d

This gives us the values for the αi.

2Notice that this is the only way the dimensionality of the matrices will match up in a way that makes
sense.
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To see that it is a local minimum, notice that the matrix of second partial derivatives is
just A∗A which has to be positive definite since ~w∗A∗A~w =< A~w,A~w >= ‖A~w‖2 > 0
since A consists of linearly independent columns.

g. Now, suppose in part (f) above that the vectors ~ai are all orthogonal to each other.
Simplify your answer to part (f) for this case. What is special about orthogonality?

If the vectors are orthogonal, then the matrix (A∗A) is diagonal. As such, its inverse
(A∗A)−1 is also diagonal where the ith diagonal entry is just 1

~a∗i ~ai
. As such, the equations

for the αi become particularly simple:

αi =
~a∗i

~d

~a∗i~ai

The orthogonality lets us calculate the αi individually without having to calculate any
of the others.

h. BONUS: Show that the error vector in part (f) is orthogonal to the entire subspace
spanned by the ~ai.

One answer is to just repeat the calculation in part (e) above with A playing the role
of V above.

The other, more intuitive solution, is to follow the hint. We use part (g) and feed it a
set of orthogonal vectors generated from the original ~ai’s by using Gramm-Schmidt on
them. We don’t actually have to do it, just realize that we can and that it would give
you m orthogonal vectors ~oi spanning the same subspace as the ~ai. So we know that
the answers from part (g) and part (f) must describe the same vector and hence:

A(A∗A)−1A∗~d =
m∑

i=1

~oi
~o∗i

~d

~o∗i~oi

Now, we can generate an om+1 by throwing in ~d to the the list for Gramm-Schmidt
orthogonalization. At this point, we know by construction that ~d is in the span of the
m + 1 orthogonal vectors ~oi. So we have:

~d =
m+1∑
i=1

~oi
~o∗i

~d

~o∗i~oi

= ~om+1

~o∗m+1
~d

~o∗m+1~om+1

+
m∑

i=1

~oi
~o∗i

~d

~o∗i~oi

Subtracting the two equations gives us:

~e = ~om+1

~o∗m+1
~d

~o∗m+1~om+1

which is clearly orthogonal to all the ~oi for 0 < i < m+1 by construction. So the error
vector is perpendicular to the entire subspace spanned by the original ~ai.
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At this point, you should have a firm understanding of the two major characterizations
of the projection: the geometric, as the component of a vector inside a given subspace
— so that the residual error is orthogonal to that subspace — and as the solution to
a least squares problem. In later courses and in algorithmic use of signal processing
ideas, you will have occasion to use both characterizations.

i. Interpret (g) and extend it to the case of trying to model a finite duration continuous
time complex signal s(t) (defined for t ∈ [0, T ) you can also interpret this as a periodic
signal with period T and defined for all real t) as a weighted sum of the first 2m + 1 of

the T -periodic complex exponentials ej 2πi
T

t, for i = −m,−m + 1, . . . ,−1, 0, 1, . . . , +m.
How would you pick the αi? Does your choice minimize the energy in the error?

We will follow the hint and think about the results of (g) in terms of inner products
and norms as we did in class. We can use the inner product notation to write

αi =
< ~ai, ~d >

< ~ai,~ai >

So, we can use the inner product on complex functions defined on [0, T ) given by

< f, g >=

∫ T

0

f ∗(t)g(t)dt

for which we know that the complex exponentials are orthogonal since

< ej 2πi
T

t, ej 2πk
T

t > =

∫ T

0

e−j 2πi
T

tej 2πk
T

tdt

=

∫ T

0

ej
2π(k−i)

T
tdt

=

{
0 if i 6= k
T if i = k

By the arguments given in the previous section, our resulting choice of

αi =

∫ T

0
s(t)e−j 2πi

T
tdt

T

minimizes the energy left in the error signal.

j. BONUS: Suppose that you wished to represent a finite duration discrete time signal
s(t) with t ∈ {0, 1, . . . , T − 1} but instead of using the first 2m + 1 of the T -periodic
complex exponentials (2m + 1 < T ), you decided to use the 2m + 1 of them that gave
the smallest energy in the error. Give an algorithm and justification for why it works.
(Variations of this are actually used in doing lossy image and audio compression by
combining this idea with another norm that accounts for perceptual effects.)
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This is remarkably straightforward with the results we already have. We can represent
finite duration discrete-time signals as T -dimensional complex vectors. To verify that
the complex exponentials are an orthogonal basis we just check:

< ej 2πi
T

t, ej 2πk
T

t > =
T−1∑

0

e−j 2πi
T

tej 2πk
T

t

=
T−1∑

0

ej
2π(k−i)

T
tdt

=

{
0 if i 6= k
T if i = k

and then we know that we can represent our signal as s(t) =
∑T−1

i=0 αie
j 2πi

T
t where the

αi = 1
T

∑T−1
t=0 s(t)e−j 2πi

T
t. If we wanted to represent it by a smaller subset of i ∈ Ω

where |Ω| = 2m + 1, then you know that the least squares representation would be

ŝ(t) =
∑
i∈Ω

αie
j 2πi

T
t

where the αi are as before. Moreover, we know that the error signal would be:

e(t) =
∑
i∈Ω̄

αie
j 2πi

T
t

The total energy in the error is just

< e, e > =
T−1∑
t=0

e∗(t)e(t)

=
T−1∑
t=0

(
∑
i∈Ω̄

α∗
i e
−j 2πi

T
t)(

∑
k∈Ω̄

αke
j 2πk

T
t)

=
∑
i∈Ω̄

∑
k∈Ω̄

α∗
i αk

T−1∑
t=0

e−j 2πi
T

tej 2πk
T

t

=
∑
i∈Ω̄

∑
k∈Ω̄

α∗
i αk

T−1∑
t=0

ej
2π(k−i)

T
t

= T
∑
i∈Ω̄

α∗
i αi

= T
∑
i∈Ω̄

|αi|2

And so, the choice of Ω that minimizes the energy in the error signal is the one that
has the smallest sum of square magnitudes for

∑
i∈Ω̄ |αi|2. But squaring is monotonic

and the αi do not depend on the choice of Ω.
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This is now like asking if you want to maximize the weight of candy by choosing 2m+1
different candy pieces, which candy pieces should you choose. The answer is obviously3

to choose the 2m + 1 biggest pieces of candy. How? Order all the candy and pick the
first 2m + 1.4

So, the algorithm is to sort the frequencies by |αi| in descending order and to choose
the 2m + 1 frequencies that have the most energy in them.

k. Show that if ~x =
∑n−1

i=0 αi~vi and the ~vi from an orthonormal set, then using the regular
Euclidean norm, ‖~x‖2 =

∑n−1
i=0 |αi|2.

We already did this in the last part except we had a T coming from the norm of the
basis vectors. Here that is just 1.

l. BONUS: Extend (d) to the continuous-time finite duration case. Suppose that you have
a continuous real-valued measurement d(t) defined over the interval t ∈ [0, T ] and you
want to model it as the weighted sum of m real-valued signals ai(t) all defined over the
same interval. Give and justify an algorithm involving integrals and finite-sized matrix
operations that will give the choice of αi coefficients that minimizes the energy in the
error signal e(t) = d(t)−

∑m−1
i=0 αiai(t).

Here we will use the inner product view and reason by analogy. While earlier we had
equations of the form:

A∗A~x− A∗~d = 0

these can be reinterpreted on a row by row basis as:

~a∗i (
~d− A~x) = 0

or in inner product form as:
< ~ai, ~d− A~x >= 0

This says that the error must be orthogonal to all the vectors ~ai. We can use the inner
product on continuous time signals to immediately get a matrix M where

mi,j =< ai, aj >=

∫ T

0

a∗i (t)aj(t)dt

and similarly a column vector ~c where

ci =< ai, d >=

∫ T

0

a∗i (t)d(t)dt

Then, our desired coefficients can be found by solving M~x = ~c or

~x = M−1~c

3and you can use induction to prove it if you are so inclined
4You can do better by using fancier data structures like heaps.

8


