Practice Midterm 1

Problem 1 (Short questions.)

Each of the following is either true or false. If you believe it is true, give a brief argument. If you believe it is false, you can give a brief argument or a counterexample.

- (i) The signal $s(t) = \sin(t/1000)$ is a power signal.
- (ii) If the system H_1 is linear and the system H_2 is also linear, then the system H defined as $y(t) = H\{x(t)\} = H_2\{H_1\{x(t)\}\}\$ is also linear.
- (iii) All continuous-time signals s(t) can be expressed as

$$s(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(j\omega)e^{j\omega t} d\omega, \quad \text{where} \quad S(j\omega) = \int_{-\infty}^{\infty} s(t)e^{-j\omega t} dt.$$
 (1)

- (iv) A time-invariant memoryless causal discrete-time system is always linear.
- (v) The following is a Fourier transform pair:

$$x(t) = \begin{vmatrix} \frac{\sin(t)}{\sqrt{|t|^3}} \end{vmatrix} \quad \stackrel{FT}{\longleftrightarrow} \quad X(j\omega) = \begin{cases} \sqrt{|\omega|^3}, & |\omega| \le 1\\ 0, & \text{otherwise.} \end{cases}$$
 (2)

Hint: Do not use too many equations.

Problem 2 (Convolution and Fourier representations.)

(20 Points)

Figure 1: The signals for Problem 2, Part (i).

(i) Consider the two signals shown in Figure 1. Note that the signal $x_2(t)$ consists of three impulse functions,

$$x_2(t) = \delta(t-1) - \delta(t-2) + \frac{1}{2}\delta(t-4).$$
 (3)

Sketch the convolution of the two signals, that is, sketch the signal $y(t) = (x_1 * x_2)(t)$ in the figure below. Label the axes carefully.

Figure 2: The spectrum for Problem 2, Part (ii).

(ii) The spectrum of the continuous-time signal x(t) is shown in Figure 2. Determine the signal x(t).

Problem 3 (Linear time-invariant system.)

A linear time-invariant system with input x(t) and output y(t) satisfies

$$a^{2}y(t) + 2a\frac{dy(t)}{dt} + \frac{d^{2}y(t)}{dt^{2}} = x(t).$$
(4)

- (a) Find the frequency response $H(j\omega)$ of the considered system.
- (b) For a = 1/2, sketch the magnitude of the frequency response $H(j\omega)$. Is the system rather high-pass or rather low-pass? Justify your answer.
- (c) For what values of a is the system stable? Justify your answer. Remark. If you cannot solve the math, don't worry. Just describe clearly and concisely how you would proceed, and you will get partial credit.

Problem 4 (Filtering.)

The signal x(t) with spectrum $X(j\omega)$ as shown in Figure 3 is passed through a linear time-invariant

(LTI) system with impulse response

$$h(t) = 2\operatorname{sinc}(2t), \tag{5}$$

where, as defined in class,

$$\operatorname{sinc}(t) = \frac{\sin(\pi t)}{\pi t}.$$
 (6)

Denote the output of the system by y(t). Calculate the error between x(t) and y(t), given by

$$\int_{-\infty}^{\infty} |x(t) - y(t)|^2 dt. \tag{7}$$

Figure 3: The spectrum of the signal x(t).

Problem 5 (Multiplication of Polynomials.)

Multiplying two polynomials is a cumbersome task. For example, if

$$f(x) = 3x^2 + x + 2, (8)$$

and

$$g(x) = x + 4, (9)$$

then we find

$$h(x) = f(x)g(x) = 3x^3 + 13x^2 + 6x + 8.$$
 (10)

However, we can define the coefficient signals for each polynomial, as follows:

$$f[n] = 3\delta[n-2] + \delta[n-1] + 2\delta[n], \text{ and}$$
 (11)
 $g[n] = \delta[n-1] + 4\delta[n].$ (12)

$$g[n] = \delta[n-1] + 4\delta[n]. \tag{12}$$

Then, the coefficient signal h[n] of the polynomial h(x) is given by h[n] = (f * g)[n].

- (i) Sketch the coefficient signals f[n] and g[n] versus n. Evaluate the convolution and confirm that this indeed gives the coefficient signal h[n] of the polynomial h(x).
- (ii) For the polynomials

$$a(x) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n x^n, \text{ and}$$
 (13)

$$b(x) = \sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n x^n, \tag{14}$$

find their product, i.e., find the polynomial c(x) = a(x)b(x).

Problem 6 (Fourier series.)

(i) We are given the following information about a signal x(t).

- 1. x(t) has period 2π .
- 2. x(t) has a Fourier series expansion with coefficients a_k .
- 3. $a_k = 0$ if |k| > 2.

Write down the Fourier Series expansion of x(t), simplifying as much as possible.

(ii)

We are given more information about x(t).

- 4. x(t) is real and odd.
- 5. $x(t-\pi) = -x(t)$

Find a_0 and a_2 .

(iii)

We are given another fact about x(t).

6.
$$\frac{1}{2\pi} \int_0^{2\pi} |x(t)|^2 dt = 2$$

Find a_1 .

(iv)

Graph x(t) for t in $[0, 2\pi]$. Carefully label the time axis and amplitudes.

Problem 7 (System properties.)

Consider the continuous time system whose output y(t) for the input x(t) is given by

$$y(t) = x(t - (\int_{t}^{t+1} x(u)du)^{2}).$$

Is the system:

- linear
- causal
- stable

In each case, give a brief argument or counterexample.