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Practice Midterm 2

Problem 1 (Wireless Downlink.)

A base station transmits simultaneously to three mobiles. It needs to send a signal s1(t) to Mobile 1, a
signal s2(t) to Mobile 2, and a signal s3(t) to Mobile 3. Since s1(t), s2(t) and s3(t) are speech signals,
they are real-valued and band-limited:

Si(jω) = 0, for |ω| > W, (1)

for i = 1, 2, 3 . The base station needs to produce a real-valued output signal y(t) to be transmitted out
of the antenna. The FCC allows you to use the frequency band ω0 ≤ |ω| ≤ ω0 + 3W .

• Draw the block diagram of the base station, with inputs s1(t), s2(t) and s3(t) and output y(t) ,
where y(t) must comply with FCC regulations and permit perfect recovery of s1(t), s2(t) and
s3(t) . Hint: There are multiple solutions; only one is required.

• Draw the block diagram of the demodulation system at Mobile 1, with input y(t) and output s1(t) .

You may use arbitrary components, but carefully specify all involved parameters, such as cut-off frequen-
cies of filters.

Problem 2 (Amplitude modulation.)

(a) For the discrete-time signal x[n] it is known that X(ejω) = 0 , for |ω| > π/4 . Determine the range of
ω for which the DTFT of y[n] = cos( 5π

4 n)x[n] must be zero. Hint: Select an example spectrum X(ejω)
and sketch the resulting DTFT of y[n] .

(b) The real-valued data signal x(t) is known to be band-limited, i.e., X(jω) = 0 , for |ω| > W . Consider
the block diagram of Figure 1, where

H1(jω) =
{

1, for |ω| ≤ ωc
0 otherwise, and H2(jω) =

{
1, for |ω| ≥ 2ωc
0 otherwise. (2)

• Pick an arbitrary (bandlimited) example spectrum for x(t) , and sketch the corresponding spectrum
of the signal y(t) .

• For what values of the parameters W and ωc is it possible to recover x(t) from y(t) ?

• Provide the block diagram of a system that recovers x(t) , given y(t) , carefully specifying all
involved parameters.

(c) The real-valued data signal x(t) is known to be band-limited, i.e., X(jω) = 0 , for |ω| > W . The goal
is to perform standard (i.e., double-sideband) AM with carrier frequency ωc > 5W . Unfortunately, the
only type of modulator available is multiplication by cos(ωc4 t) . Otherwise, addition, scalar multiplication,
and filters can be used. Draw the block diagram of the system that achieves our goal, and if your system
uses a filter, specify the desired frequency response. Hint: Pick an example spectrum for x(t) and sketch
the spectra of intermediate signals to maximize your chances for partial credit.
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Figure 1: Block diagram for Part (b).

(d) The real-valued data signal x(t) is known to be band-limited, i.e., X(jω) = 0 , for |ω| > W . The
goal is to perform single-sideband AM with only the lower sideband, with carrier frequency ωc > 5W .
Again, you can use addition, scalar multiplication, and multiplication by cos(ωmt) , for arbitrary ωm .
However, this time, you only have fixed ideal low-pass filters with the following frequency response:

H(jω) =
{

1, for |ω| ≤ ωc/2
0 otherwise. (3)

Draw the block diagram of a system that achieves the goal, clearly specifying all involved parameters,
such as the frequencies of the modulators, etc. Hint: Pick an example spectrum for x(t) and sketch the
spectra of intermediate signals to maximize your chances for partial credit.

Problem 3 (PAM.)

Two pulses are suggested for a PAM system:

p1(t) = ae−tu(t), and p2(t) = be−10tu(t), (4)

where a and b are positive real numbers that will be selected appropriately, leading to

yi(t) =
∞∑

k=−∞

x[k]pi(t− kT ), for i = 1, 2, (5)

where we choose T = 1 . We suppose that the data signal is bounded to |x[n]| ≤ 1 . In this problem, we
want to compare the two pulses p1(t) and p2(t) .

(a) Select a = 2 and b = 2
√

10 . For this choice, it can be shown that the pulse energy is the same for
p1(t) and for p2(t) . (You don’t have to show this!) Now consider the transmission of p1(t) and p2(t) ,
respectively, across a communication channel with impulse response h(t) and corresponding frequency
response

H(jω) =
1

6 + jω
. (6)

This yields an output signal zi(t) = (pi ∗ h)(t), for i = 1, 2.

• Evaluate the energy of the received signals, z1(t) and z2(t) , respectively.

• Which received signal has the larger energy?

• How is it possible that even though the two pulses have the same transmitted energy, their received
energies differ?
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(b) (Hard problem) To have a fair comparison, we have to make sure that the powers of the transmitted
signals y1(t) and y2(t) , respectively, are equal. To adjust the power, assume that x[n] = 1 for all n ,
i.e., for −∞ < n <∞ . Determine the relationship between a and b such that for this particular x[n] ,
the signals y1(t) and y2(t) have the same power. (As seen in class, this provides a worst case analysis.)
Hint: By contrast to Part (a), this question studies the power of the entire signal, rather than the energy
of a single pulse.

Problem 4 (Discrete-time Differentiator.)

We would like to construct a system D that implements a derivative, that is, for an input x(t) , the
system should give an output y(t) given by

y(t) = D{x(t)} =
dx(t)
dt

. (7)

It is suggested to use the following system:

-
x(t)

H(jω) -
z(t) Sampling at

intervals T
-

z[n]
G(ejΩ) -

y1[n] Ideal

Reconstruction
-

ỹ(t)

where

G(ejΩ) = j
Ω
T
, for |Ω| ≤ π. (8)

This system does not exactly implement the desired system D . Instead, it produces an output ỹ(t)
which is, in general, not equal to the desired output y(t) .

(a) Suppose that

H(jω) =
{

1, for |ω| ≤ π/T
0 otherwise, (9)

• Determine and sketch the overall frequency response (magnitude and phase) of the system with
input x(t) and output ỹ(t) .

• For the test signal x(t) with Fourier transform

X(jω) = e−|ω|, (10)

determine the error between the desired signal, y(t) , and the actual system output, ỹ(t) , given by

E =
∫ ∞
−∞
|y(t)− ỹ(t)|2dt, (11)

as a function of the sampling interval T . What happens as we increase the sampling frequency?

(b) Unfortunately, it is quite difficult to exactly implement ideal frequency filters like H(jω) in Part (a).
As a simple model of this imperfection, suppose now that

H(jω) =
{

1, for |ω| ≤ π/T
ε otherwise. (12)

For the same test signal as in Part (a), that is, X(jω) = e−|ω| , determine the spectrum Zδ(jω) of the
sampled signal,

zδ(t) = z(t)
∞∑

k=−∞

δ(t− kT ). (13)
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• Start with a sketch of Zδ(jω) , carefully labeling the frequency axis.

• Which adverse effect corrupts the signal zδ(t) ?

• Then, write out a formula for Zδ(jω) . The simpler your formula, the better.

Problem 5 (LTI System Analysis.)

A causal LTI system has a transfer function

H(s) =
(s+ 4)(s2 + 5s+ 6)
(s+ 1)(s2 − 2s+ 3)

. (14)

Determine the differential equation that describes this system. Find the impulse response h(t) . Is the
system stable? Does this system have a stable and causal inverse system?
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