Handout 2: Linear Algebra and Fourier

1 Basic Concepts of Linear Algebra

1.1 Definitions of vectors and matrices

Formally, a vector is an object in a vector space; which is a set that is closed under vector addition and scalar multiplication, and possesses certain properties. Informally, we can think of a vector as a one-dimensional array of scalars. In this course, we will mostly be interested in the vector space of length n complex numbers, denoted by \mathbb{C}^{n}. A vector \mathbf{v} in \mathbb{C}^{n} can be written as

$$
\mathbf{v}=\left(\begin{array}{c}
v_{1} \tag{1}\\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right)
$$

where $v_{i} \in \mathbb{C} \quad i=1,2, \ldots, n$
A matrix is a two-dimensional, rectangular array of scalars. In this course, we will mostly be interested in the set of m-by- n matrices of complex numbers, denoted by $\mathbb{C}^{m x n}$. A matrix A in $\mathbb{C}^{m x n}$ can be written as

$$
A=\left(\begin{array}{cccc}
A_{11} & A_{12} & \ldots & A_{1 n} \tag{2}\\
A_{21} & A_{22} & \ldots & A_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{m 1} & A_{m 2} & \ldots & A_{m n}
\end{array}\right)
$$

where $A_{i j} \in \mathbb{C} \quad i=1,2, \ldots, m \quad j=1,2, \ldots, n$

1.2 Vector and matrix operations

Vector Norm: The norm of a vector \mathbf{v}, denoted by $\|\mathbf{v}\|$, is defined as

$$
\|\mathbf{v}\|=\left(\sum_{i=1}^{n}\left|v_{i}\right|^{2}\right)^{1 / 2}
$$

Inner product: The inner product of two vectors \mathbf{x} and \mathbf{y} in \mathbb{C}^{n}, denoted by $\langle\mathbf{x}, \mathbf{y}\rangle$, is defined as

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{n} x_{i}^{*} y_{i}
$$

where x_{i}^{*} is the complex conjugate of x_{i}. Note that two vectors must be in the same vector space for the inner product to be defined. Also, it should be clear that $\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle}$
If $\langle\mathbf{x}, \mathbf{y}\rangle=0$, then we say that \mathbf{x} and \mathbf{y} are orthogonal.
Matrix multiplication: If $A \in \mathbb{C}^{m x n}$ and $B \in \mathbb{C}^{n x p}$, then $C=A \cdot B$ is a matrix in $\mathbb{C}^{m x p}$ with elements given by the equation

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
$$

The matrix multiplication $A \cdot B$ is only defined when the number of columns in A is equal to the number of rows in B.

A matrix can also be thought of as a transformation between two vector spaces. If \mathbf{x} is a vector in \mathbb{C}^{n} and A is a matrix in $\mathbb{C}^{m x n}$, then $y=A \cdot x$ is a vector in \mathbb{C}^{m}.
Determinant: The determinant of a square matrix A, denoted by $|A|$, is a scalar that is computed in the following manner. If A is a 1 -by- 1 matrix, then $|A|=A_{11}$. If A is 2 -by 2 , then

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

For larger square matrices, the determinant is computed recursively, as we will see in class.
Hermitian transpose: The Hermitian transpose of A is denoted by A^{*}. The element in row i, column j of A^{*} is equal to the complex conjugate of the element in row j, column i of A, i.e., $\left(A^{*}\right)_{i j}=\left(A_{j i}\right)^{*}$. The matrix H is called Hermitian if $H^{*}=H$. (Note that many texts also use the notation A^{H} to denote the Hermitian transpose of the matrix A.)

1.3 Unitary and inverse matrices

Identity matrix: The n-by- n identity matrix I_{n} is equal to 1 on its main diagonal, and 0 everywhere else.

$$
I_{n}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \tag{3}\\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right)
$$

Unitary matrices: An n-by- n matrix A is unitary if $A^{*} \cdot A=I_{n}$ and $A \cdot A^{*}=I_{n}$. Note that because matrix multiplication is not commutative, both conditions must be checked.

Matrix Inverse: For an n-by- n square matrix A, the inverse matrix is the matrix A^{-1} such that $A \cdot A^{-1}=I_{n}$ and $A^{-1} \cdot A=I_{n}$. The inverse of A exists if and only if $|A| \neq 0$.

1.4 Basis vectors

A set of n linearly independent vectors in \mathbb{C}^{n} is referred to as a basis. If we label the vectors in the basis set as $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$, then any vector \mathbf{y} in \mathbb{C}^{n} can be written as

$$
\mathbf{y}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\ldots+\alpha_{n} \mathbf{v}_{n}
$$

2 The DTFS as a matrix multiplication

2.1 Three Definitions of the DTFS (or DFT)

The definition of the DFT (or DTFS) in our textbook is

$$
\begin{equation*}
X[k]=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k}{N} n} \quad \text { and } \quad x[n]=\sum_{k=0}^{N-1} X[k] e^{j \frac{2 \pi k}{N} n} \tag{4}
\end{equation*}
$$

In MATLAB, the definition is

$$
\begin{equation*}
X_{M}[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k}{N} n} \quad \text { and } \quad x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X_{M}[k] e^{j \frac{2 \pi k}{N} n} \tag{5}
\end{equation*}
$$

Apparently, people cannot agree as to where the factor $\frac{1}{N}$ should go. In order to gain geometric insight, the best definition is actually the unitary form of the DFT, where the factor $\frac{1}{N}$ is fairly split between the Fourier transform and its inverse:

$$
\begin{equation*}
X_{u}[k]=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k}{N} n} \quad \text { and } \quad x[n]=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X_{u}[k] e^{j \frac{2 \pi k}{N} n} \tag{6}
\end{equation*}
$$

2.2 Signals as vectors

For a periodic signal, let us define the vector containing one period of the signal simply as

$$
\mathbf{x}=\left(\begin{array}{c}
x[0] \tag{7}\\
x[1] \\
x[2] \\
x[3] \\
\vdots \\
x[N-1]
\end{array}\right)
$$

2.3 The DTFS as a matrix multiplication

We define the "Fourier matrix" as follows:

$$
F=\frac{1}{\sqrt{N}}\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & \cdots \tag{8}\\
1 & e^{-j \frac{2 \pi}{N}} & e^{-j 2 \frac{2 \pi}{N}} & e^{-j 3 \frac{2 \pi}{N}} & \ldots \\
1 & e^{-j 2 \frac{2 \pi}{N}} & e^{-j 4 \frac{2 \pi}{N}} & e^{-j 6 \frac{2 \pi}{N}} & \cdots \\
1 & e^{-j 3 \frac{2 \pi}{N}} & e^{-j 6 \frac{2 \pi}{N}} & e^{-j 9 \frac{2 \pi}{N}} & \cdots \\
e^{-j(N-1) \frac{2 \pi}{N}} \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right.
$$

In terms of this matrix, we can easily express our three DTFS, as follows:

$$
\begin{align*}
\mathbf{X} & =\frac{1}{\sqrt{N}} F \mathbf{x} \tag{9}\\
\mathbf{X}_{M} & =\sqrt{N} F \mathbf{x} \tag{10}\\
\mathbf{X}_{u} & =F \mathbf{x} \tag{11}
\end{align*}
$$

The key property of the matrix F is that it is unitary. Therefore, it is entirely straightforward to find the matrix that characterizes the inverse DTFS: it is simply the Hermitian transpose of the Fourier matrix, as follows:

$$
\begin{equation*}
\mathbf{x}=F^{*} \mathbf{X}_{u} \tag{12}
\end{equation*}
$$

It is entirely straightforward to prove this: simply note that

$$
\begin{equation*}
\mathbf{x}=F^{*} \mathbf{X}_{u}=F^{*}(F \mathbf{x})=F^{*} F \mathbf{x}=\mathbf{x} \tag{13}
\end{equation*}
$$

where the last step follows precisely because F is unitary, which means that $F^{H} F=I$.

3 Advanced Concepts of Linear Algebra

3.1 Eigenvalues and eigenvectors

Let A be a square matrix in $\mathbb{C}^{n x n}$. If \mathbf{x} is a non-zero vector in \mathbb{C}^{n} and λ is a complex scalar that satisfy this equation

$$
A \cdot \mathbf{x}=\lambda \mathbf{x}
$$

then λ is referred to as an eigenvalue, and \mathbf{x} is referred to as an eigenvector. The matrix A will have at least one and at most n unique eigenvalues.

