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Handout 2: Linear Algebra and Fourier

1 Basic Concepts of Linear Algebra

1.1 Definitions of vectors and matrices

Formally, a vector is an object in a vector space; which is a set that is closed under vector addition
and scalar multiplication, and possesses certain properties. Informally, we can think of a vector as a
one-dimensional array of scalars. In this course, we will mostly be interested in the vector space of length
n complex numbers, denoted by Cn . A vector v in Cn can be written as

v =











v1

v2

...
vn











(1)

where vi ∈ C i = 1, 2, . . . , n

A matrix is a two-dimensional, rectangular array of scalars. In this course, we will mostly be interested
in the set of m -by-n matrices of complex numbers, denoted by Cmxn . A matrix A in Cmxn can be
written as

A =











A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

. . .
...

Am1 Am2 . . . Amn











(2)

where Aij ∈ C i = 1, 2, . . . , m j = 1, 2, . . . , n

1.2 Vector and matrix operations

Vector Norm: The norm of a vector v , denoted by ‖v‖ , is defined as

‖v‖ =

(

n
∑

i=1

|vi|2
)1/2

Inner product: The inner product of two vectors x and y in Cn , denoted by 〈x,y〉 , is defined as

〈x,y〉 =

n
∑

i=1

x∗

i yi
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where x∗

i is the complex conjugate of xi . Note that two vectors must be in the same vector space for
the inner product to be defined. Also, it should be clear that ‖v‖ =

√

〈v,v〉
If 〈x,y〉 = 0 , then we say that x and y are orthogonal.

Matrix multiplication: If A ∈ C
mxn and B ∈ C

nxp , then C = A · B is a matrix in C
mxp with

elements given by the equation

Cij =
n
∑

k=1

AikBkj

The matrix multiplication A ·B is only defined when the number of columns in A is equal to the number
of rows in B .

A matrix can also be thought of as a transformation between two vector spaces. If x is a vector in Cn

and A is a matrix in Cmxn , then y = A · x is a vector in Cm .

Determinant: The determinant of a square matrix A , denoted by |A| , is a scalar that is computed in
the following manner. If A is a 1 -by- 1 matrix, then |A| = A11 . If A is 2 -by2 , then

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

= ad − bc

For larger square matrices, the determinant is computed recursively, as we will see in class.

Hermitian transpose: The Hermitian transpose of A is denoted by A∗ . The element in row i , column
j of A∗ is equal to the complex conjugate of the element in row j , column i of A , i.e., (A∗)ij = (Aji)

∗ .
The matrix H is called Hermitian if H∗ = H . (Note that many texts also use the notation AH to
denote the Hermitian transpose of the matrix A .)

1.3 Unitary and inverse matrices

Identity matrix: The n -by-n identity matrix In is equal to 1 on its main diagonal, and 0 everywhere
else.

In =















1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1















(3)

Unitary matrices: An n -by-n matrix A is unitary if A∗ ·A = In and A ·A∗ = In . Note that because
matrix multiplication is not commutative, both conditions must be checked.

Matrix Inverse: For an n -by-n square matrix A , the inverse matrix is the matrix A−1 such that
A · A−1 = In and A−1 · A = In . The inverse of A exists if and only if |A| 6= 0 .

1.4 Basis vectors

A set of n linearly independent vectors in Cn is referred to as a basis. If we label the vectors in the
basis set as {v1,v2, . . . ,vn} , then any vector y in Cn can be written as

y = α1v1 + α2v2 + . . . + αnvn
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2 The DTFS as a matrix multiplication

2.1 Three Definitions of the DTFS (or DFT)

The definition of the DFT (or DTFS) in our textbook is

X [k] =
1

N

N−1
∑

n=0

x[n]e−j 2πk

N
n and x[n] =

N−1
∑

k=0

X [k]ej 2πk

N
n. (4)

In MATLAB, the definition is

XM [k] =

N−1
∑

n=0

x[n]e−j 2πk

N
n and x[n] =

1

N

N−1
∑

k=0

XM [k]ej 2πk

N
n. (5)

Apparently, people cannot agree as to where the factor 1
N should go. In order to gain geometric insight,

the best definition is actually the unitary form of the DFT, where the factor 1
N is fairly split between

the Fourier transform and its inverse:

Xu[k] =
1√
N

N−1
∑

n=0

x[n]e−j 2πk

N
n and x[n] =

1√
N

N−1
∑

k=0

Xu[k]ej 2πk

N
n. (6)

2.2 Signals as vectors

For a periodic signal, let us define the vector containing one period of the signal simply as

x =



















x[0]
x[1]
x[2]
x[3]

...
x[N − 1]



















(7)

2.3 The DTFS as a matrix multiplication

We define the “Fourier matrix” as follows:

F =
1√
N





















1 1 1 1 . . . 1

1 e−j 2π

N e−j2 2π

N e−j3 2π

N . . . e−j(N−1) 2π

N

1 e−j2 2π

N e−j4 2π

N e−j6 2π

N . . . e−j2(N−1) 2π

N

1 e−j3 2π

N e−j6 2π

N e−j9 2π

N . . . e−j3(N−1) 2π

N

...
...

...
...

. . .
...

1 e−j(N−1) 2π

N e−j2(N−1) 2π

N e−j3(N−1) 2π

N . . . e−j(N−1)(N−1) 2π

N





















(8)

In terms of this matrix, we can easily express our three DTFS, as follows:

X =
1√
N

Fx (9)

XM =
√

NFx (10)

Xu = Fx (11)
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The key property of the matrix F is that it is unitary. Therefore, it is entirely straightforward to find the
matrix that characterizes the inverse DTFS: it is simply the Hermitian transpose of the Fourier matrix,
as follows:

x = F ∗Xu. (12)

It is entirely straightforward to prove this: simply note that

x = F ∗Xu = F ∗ (Fx) = F ∗Fx = x, (13)

where the last step follows precisely because F is unitary, which means that FHF = I .

3 Advanced Concepts of Linear Algebra

3.1 Eigenvalues and eigenvectors

Let A be a square matrix in C
nxn . If x is a non-zero vector in C

n and λ is a complex scalar that
satisfy this equation

A · x = λx

then λ is referred to as an eigenvalue, and x is referred to as an eigenvector. The matrix A will have
at least one and at most n unique eigenvalues.
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