
EECS 120 Signals & Systems University of California, Berkeley: Fall 2005
Gastpar August 29, 2005

Homework 1
Due: Thursday, September 8, 2005, at 3pm

Reading OWN Chapter 1 and Chapter 2, Sections 2.1 and 2.2.

Practice Problems (Suggestions.) OWN 1.3, 1.11, 1.17, 2.4, 2.11(a)

Problem 1 (Complex numbers.)

(a) With two real numbers, a and α , a complex number can be specified in its polar form as

z = aejα, (1)

where j is the imaginary unit (i.e., the root of −1 ). In terms of a and α , express the magnitude |z| ,
the phase arg(z) , the real part Re{z} , the imaginary part Im{z} , and the complex conjugate z∗ .

(b) Express the following complex numbers in Cartesian and polar coordinates (remember to consider
the range of α ), and draw them in the complex plane:

ej5π,
1
3
ejπ/4,

(
1
3
ejπ/4

)∗
, 2 + j,

1 + 2j

3 + j
, j−j . (2)

(c) Express a+jb
c+jd in polar form.

(d) Consider the complex-valued function

H(jω) =
1

1− 2jω
, (3)

where ω is a real number. Sketch |H(jω)| and arg(H(jω)) versus ω for −5 < ω < 5 . Remark: Writing
H(jω) is standard engineering practice, even though strictly speaking, it would be more logical to write
H(ω) .

Problem 2 (Elementary functions and their graphs.)

(a) Consider the complex-valued signal y(t) = ej2πt .

Express (as functions of t ): Re{y(t)}, Im{y(t)}, |y(t)|, arg(y(t)) .

Sketch by hand, in one figure, for −1 ≤ t ≤ 1 , the following functions: y1(t) = Re{y(t)}, y2(t) =
Im{y(3t)}, y3(t) = Re{y(2t + 0.5)}, y4(t) = Re{y(−2t + 0.5)} . Clearly label the sketches and their
zero-crossings.

(b) Determine the fundamental period of the signal z(t) = cos(π
3 t) + cos( 2π

5 t) .

(c) Is w(t) = cos(π
3 t) + cos(t) periodic? If so, determine its fundamental period.

(d) Consider the following function:

x(t) =

 1 + t, −1 ≤ t ≤ 0,
1− 2t, 0 ≤ t ≤ 1/2,
0, otherwise.

(4)
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Sketch, in one figure, x(t) , x(t/2− 3) , and x(2− t) . Carefully label both axes in the plot.

Problem 3 (Properties of signals.)

Categorize each of the following signals as an energy signal or a power signal, and find the energy or
time-averaged power of the signal: (Please include your derivation of the result.)

(a) The continuous-time signal x(t) , defined by

x(t) =
{

2e−3t, t ≥ 0,
0, otherwise. (5)

(b) The discrete-time signal y[n] , defined by

y[n] =

 3− n, 0 ≤ n < 3,
n− 3, 3 ≤ n ≤ 6,
0, otherwise.

(6)

(c) The continuous-time signal z(t) , defined for −∞ < t < ∞ by

z(t) = sin(
π

2
t) + 2 cos(5πt). (7)

Problem 4 (Periodic discrete-time signals.)

(a) Let y1[n] = cos(π
3 n) and y2[n] = cos( 3π

5 n) . What are their fundamental periods? Plot two periods
of each signal in Matlab and clearly mark the end of each period.

(b) Determine the fundamental period of the signal z[n] = y1[n] + y2[n] . Plot two periods of z[n] in
Matlab and clearly mark the end of each period.

(c) Is z[n] = cos(2n) periodic? If so, what is its period?

Problem 5 (Properties of systems.)

Are the following systems linear? Are they time-invariant? In each case, give a short justification using
the definitions of these properties.

(a) H{x(t)} = x(at + b)

(b) H{x(t)} = x(at2 + b)

(c) H{x(t)} = x(at) + b

(d) H{x(t)} = d
dtx(t)

Problem 6 (Properties of systems.)

For each of the following systems with input x(t) and output y(t) , determine whether the system is
(i) memoryless, (ii) stable, (iii) causal, (iv) linear, and (v) time invariant. In each case, give a short
justification using the definitions of these properties.

(e) y(t) = x(t) et+e−t
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(f) y(t) =
∫ t/2

−∞ x(3τ)dτ
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(g) y(t) = x(−t/2)

(h) y[n] =
∑n

k=−∞ x[k + 1]

(i) y[n] = x[n]
∑∞

k=−∞ δ[n− 3k]

(j) y[n] =
{

x[n], n odd,
0, otherwise.

Problem 7 (Convolution of step functions.)

Recall that if an LTI system has impulse response h(t) and input x(t), the output is given by a con-
volution y(t) = h(t) ∗ x(t) =

∫∞
−∞ h(τ)x(t − τ)dτ. Recall also that the unit step function is defined

as

u(t) =
{

1, if t ≥ 0,
0, otherwise. (8)

For the following, find the output given the input x(t) and the system impulse response h(t) specified.
Sketch (by hand) the input, the impulse response, and the output.

(a) h(t) = u(t)− u(t− 1) , x(t) = u(t)

(b) h(t) = u(t) , x(t) = u(t)

(c) h(t) = u(t)− u(t− 1) , x(t) = u(t)− u(t− 1)

(d) Explain in words what one should expect when convolving step/pulses with steps/pulses.

Problem 8 (Convolution via matlab.)

Many homework sets will have a component in Matlab. For this problem, you will use Matlab to convolve
exponentials. You can type ‘help conv’ in Matlab for help on using the function. For the following, plot
h(t) and x(t) in the domain [−2, 2] with .01 between points. Then, plot the resulting convolution. To
create the time axis, you can use, for example, ’t = [-2:.01:2]’. If the Matlab exercises in this homework
require a lot of effort, you should go through a tutorial on Matlab. Please submit your Matlab code along
with the plots.

(a) h(t) = e−tu(t) and x(t) = u(t)

(b) h(t) = e−t/2u(t) and x(t) = e−tu(t)
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