Homework 1

Due: Thursday, September 8, 2005, at 3pm

Reading OWN Chapter 1 and Chapter 2, Sections 2.1 and 2.2.
Practice Problems (Suggestions.) OWN 1.3, 1.11, 1.17, 2.4, 2.11(a)

Problem 1 (Complex numbers.)
(a) With two real numbers, a and α, a complex number can be specified in its polar form as

$$
\begin{equation*}
z=a e^{j \alpha} \tag{1}
\end{equation*}
$$

where j is the imaginary unit (i.e., the root of -1). In terms of a and α, express the magnitude $|z|$, the phase $\arg (z)$, the real part $\operatorname{Re}\{z\}$, the imaginary part $\operatorname{Im}\{z\}$, and the complex conjugate z^{*}.
(b) Express the following complex numbers in Cartesian and polar coordinates (remember to consider the range of α), and draw them in the complex plane:

$$
\begin{equation*}
e^{j 5 \pi}, \frac{1}{3} e^{j \pi / 4},\left(\frac{1}{3} e^{j \pi / 4}\right)^{*}, 2+j, \frac{1+2 j}{3+j}, j^{-j} \tag{2}
\end{equation*}
$$

(c) Express $\frac{a+j b}{c+j d}$ in polar form.
(d) Consider the complex-valued function

$$
\begin{equation*}
H(j \omega)=\frac{1}{1-2 j \omega} \tag{3}
\end{equation*}
$$

where ω is a real number. Sketch $|H(j \omega)|$ and $\arg (H(j \omega))$ versus ω for $-5<\omega<5$. Remark: Writing $H(j \omega)$ is standard engineering practice, even though strictly speaking, it would be more logical to write $H(\omega)$.

Problem 2 (Elementary functions and their graphs.)

(a) Consider the complex-valued signal $y(t)=e^{j 2 \pi t}$.

Express (as functions of t): $\operatorname{Re}\{y(t)\}, \operatorname{Im}\{y(t)\},|y(t)|, \arg (y(t))$.
Sketch by hand, in one figure, for $-1 \leq t \leq 1$, the following functions: $y_{1}(t)=\operatorname{Re}\{y(t)\}, y_{2}(t)=$ $\operatorname{Im}\{y(3 t)\}, y_{3}(t)=\operatorname{Re}\{y(2 t+0.5)\}, y_{4}(t)=\operatorname{Re}\{y(-2 t+0.5)\}$. Clearly label the sketches and their zero-crossings.
(b) Determine the fundamental period of the signal $z(t)=\cos \left(\frac{\pi}{3} t\right)+\cos \left(\frac{2 \pi}{5} t\right)$.
(c) Is $w(t)=\cos \left(\frac{\pi}{3} t\right)+\cos (t)$ periodic? If so, determine its fundamental period.
(d) Consider the following function:

$$
x(t)=\left\{\begin{array}{lc}
1+t, & -1 \leq t \leq 0 \tag{4}\\
1-2 t, & 0 \leq t \leq 1 / 2 \\
0, & \text { otherwise }
\end{array}\right.
$$

Sketch, in one figure, $x(t), x(t / 2-3)$, and $x(2-t)$. Carefully label both axes in the plot.

Problem 3 (Properties of signals.)
Categorize each of the following signals as an energy signal or a power signal, and find the energy or time-averaged power of the signal: (Please include your derivation of the result.)
(a) The continuous-time signal $x(t)$, defined by

$$
x(t)= \begin{cases}2 e^{-3 t}, & t \geq 0 \tag{5}\\ 0, & \text { otherwise }\end{cases}
$$

(b) The discrete-time signal $y[n]$, defined by

$$
y[n]=\left\{\begin{array}{lc}
3-n, & 0 \leq n<3 \tag{6}\\
n-3, & 3 \leq n \leq 6 \\
0, & \text { otherwise }
\end{array}\right.
$$

(c) The continuous-time signal $z(t)$, defined for $-\infty<t<\infty$ by

$$
\begin{equation*}
z(t)=\sin \left(\frac{\pi}{2} t\right)+2 \cos (5 \pi t) \tag{7}
\end{equation*}
$$

Problem 4 (Periodic discrete-time signals.)
(a) Let $y_{1}[n]=\cos \left(\frac{\pi}{3} n\right)$ and $y_{2}[n]=\cos \left(\frac{3 \pi}{5} n\right)$. What are their fundamental periods? Plot two periods of each signal in Matlab and clearly mark the end of each period.
(b) Determine the fundamental period of the signal $z[n]=y_{1}[n]+y_{2}[n]$. Plot two periods of $z[n]$ in Matlab and clearly mark the end of each period.
(c) Is $z[n]=\cos (2 n)$ periodic? If so, what is its period?

Problem 5 (Properties of systems.)
Are the following systems linear? Are they time-invariant? In each case, give a short justification using the definitions of these properties.
(a) $\mathcal{H}\{x(t)\}=x(a t+b)$
(b) $\mathcal{H}\{x(t)\}=x\left(a t^{2}+b\right)$
(c) $\mathcal{H}\{x(t)\}=x(a t)+b$
(d) $\mathcal{H}\{x(t)\}=\frac{d}{d t} x(t)$

Problem 6 (Properties of systems.)

For each of the following systems with input $x(t)$ and output $y(t)$, determine whether the system is (i) memoryless, (ii) stable, (iii) causal, (iv) linear, and (v) time invariant. In each case, give a short justification using the definitions of these properties.
(e) $y(t)=x(t) \frac{e^{t}+e^{-t}}{2}$
(f) $y(t)=\int_{-\infty}^{t / 2} x(3 \tau) d \tau$
(g) $y(t)=x(-t / 2)$
(h) $y[n]=\sum_{k=-\infty}^{n} x[k+1]$
(i) $y[n]=x[n] \sum_{k=-\infty}^{\infty} \delta[n-3 k]$
(j) $y[n]=\left\{\begin{array}{cc}x[n], & n \text { odd, } \\ 0, & \text { otherwise. }\end{array}\right.$

Problem 7 (Convolution of step functions.)

Recall that if an LTI system has impulse response $h(t)$ and input $x(t)$, the output is given by a convolution $y(t)=h(t) * x(t)=\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau$. Recall also that the unit step function is defined as

$$
u(t)=\left\{\begin{array}{lc}
1, & \text { if } t \geq 0 \tag{8}\\
0, & \text { otherwise }
\end{array}\right.
$$

For the following, find the output given the input $x(t)$ and the system impulse response $h(t)$ specified. Sketch (by hand) the input, the impulse response, and the output.
(a) $h(t)=u(t)-u(t-1), x(t)=u(t)$
(b) $h(t)=u(t), x(t)=u(t)$
(c) $h(t)=u(t)-u(t-1), x(t)=u(t)-u(t-1)$
(d) Explain in words what one should expect when convolving step/pulses with steps/pulses.

Problem 8 (Convolution via matlab.)
Many homework sets will have a component in Matlab. For this problem, you will use Matlab to convolve exponentials. You can type 'help conv' in Matlab for help on using the function. For the following, plot $h(t)$ and $x(t)$ in the domain $[-2,2]$ with .01 between points. Then, plot the resulting convolution. To create the time axis, you can use, for example, ' $t=[-2: .01: 2]$ '. If the Matlab exercises in this homework require a lot of effort, you should go through a tutorial on Matlab. Please submit your Matlab code along with the plots.
(a) $h(t)=e^{-t} u(t)$ and $x(t)=u(t)$
(b) $h(t)=e^{-t / 2} u(t)$ and $x(t)=e^{-t} u(t)$

