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Handout 2: Sampling

This handout is a complement to the textbook, OWN Chapter 7 (Section 7.1 in particular).

It has been remarked that “A common approach today in signal processing is to convert analog
input signals as quickly as possible into digital signals, then to process these digital signals in
sophisticated ways before converting the digital output to the desired final analog signal.” One
key goal of our discussion will precisely be to analyze when and how a desired continuous-time
system can be implemented as the cascade of a sampler—discrete-time system—conversion to
continuous-time signal.

Sampling Of Band-Limited Signals

Definition. A continuous-time signal s(t) is called band-limited (sometimes also base-band)
if its spectrum (i.e., its Fourier transform) S(jω) satisfies

S(jω) = 0, for |ω| > ωM . (1)

The key insight of the sampling theorem is to prove that any band-limited signal s(t) is —
surprisingly — uniquely specified by its values sampled at times t = kTs , where Ts = π/ωM
and k goes through all integers, −∞ < k <∞ . The constant Ts is called the sampling interval,
and we will call ωs = 2π/Ts = 2ωM the sampling frequency. Note that the sampling frequency
is twice the highest frequency in the sampled signal.

This can be proved in various ways. We discuss two of them in class: the first is explained in
this handout, and the second in Section 7.1 of the textbook.

Derivation Of The Sampling Theorem

The key idea of our derivation is to write the spectrum S(jω) as a Fourier series.

To do this, consider S̃(jω) , which is just the periodic repetition of S(jω) , with period 2ωM .
The original, band-limited spectrum S(jω) and the periodic repetition S̃(jω) are sketched
in Figure 1 for a simple example. But we have seen in class that any periodic signal can be
expressed as a Fourier series. For the case at hand, the fundamental period is 2ωM , and the
fundamental frequency is 2π/(2ωM ) = π/ωM , and we can write

S̃(jω) =
∞∑

n=−∞
cne

jn π
ωM

ω
, (2)

where the coefficients cn are given, as usual, by

cn =
1

2ωM

∫ ωM

−ωM
S̃(jω)e−jn

π
ωM

ω
dω =

1
2ωM

∫ ωM

−ωM
S(jω)e−jn

π
ωM

ω
dω. (3)
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The last equality holds because over the interval −ωM < ω < ωM , we have that S̃(jω) = S(jω) .
For the derivation of sampling, we do not need these formulae for cn .
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Figure 1: An example of a band-limited signal s(t) . Its spectrum S(jω) is shown on the left,
and the periodic extension S̃(jω) used in our proof of the sampling theorem is shown on the
right.

The signal s(t) can, of course, be written as

s(t) =
1

2π

∫ ∞
−∞

S(jω)ejωtdω (4)

=
1

2π

∫ ωM

−ωM
S(jω)ejωtdω, (5)

since S(jω) is zero when |ω| > ωM . But over this interval, S(jω) and S̃(jω) are equal, and
so we can write

s(t) =
1

2π

∫ ωM

−ωM
S̃(jω)ejωtdω (6)

=
1

2π

∫ ωM

−ωM

( ∞∑
n=−∞

cne
jn π

ωM
ω

)
ejωtdω (7)

The next key step is to swap the summation and the integration to obtain

s(t) =
∞∑

n=−∞
cn

(
1

2π

∫ ωM

−ωM
e
jn π

ωM
ω
ejωtdω

)
. (8)

Now, let’s look at the signal only at the points t = kπ/ωM , where k is any integer, −∞ < k <
∞ . We find

s(t = kπ/ωM ) =
∞∑

n=−∞
cn

(
1

2π

∫ ωM

−ωM
e
jω
(
kπ
ωM

+ nπ
ωM

)
dω

)
. (9)

The integral is zero unless n = −k . (No magic here: just solve the integral!) When n = −k ,
the integral expression in parentheses evaluates to ωM/π , and we find

s(kπ/ωM ) =
ωM
π
c−k. (10)

That’s great! This is the heart of the sampling theorem: Apparently, merely knowing the
signal at times kπ/ωM gives you all the coefficients ck . But those coefficients give you the full
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spectrum S(jω) . Of course, once you know the spectrum S(jω) , it is an easy game to get back
the full signal s(t) . This proves the sampling theorem:

Theorem (Nyquist-Shannon sampling theorem). An arbitrary (real or complex) base-
band signal s(t) of bandwidth ωM (i.e., S(jω) = 0 for |ω| > ωM ) is uniquely determined by
its samples taken at regular intervals of length Ts = π/ωM , i.e., at a sampling frequency of
ωs = 2π/Ts = 2ωM .

Note in particular that one has to sample at twice the highest frequency in the considered signal.

Another derivation of the same sampling theorem is the so-called Impulse-train Sampling, as
described in Section 7.1.1 of the textbook. This will be discussed in Lecture 10.

Reconstruction From The Samples

The theorem says that the base-band signal s(t) is uniquely specified by the samples s(kπ/ωM ) .
But, given these samples, how can we reconstruct the signal s(t) ?

This is very simple. As we have seen above, we can write s(t) as

s(t) =
∞∑

n=−∞
cn

(
1

2π

∫ ωM

−ωM
e
jn π

ωM
ω
ejωtdω

)
, (11)

where the coefficients cn are simply the samples,

cn =
π

ωM
s(−nπ/ωM ). (12)

To have a nicer expression, let us substitute, in the sum, k = −n . Then, the signal can be
written as

s(t) =
∞∑

k=−∞

π

ωM
s(kπ/ωM )

(
1

2π

∫ ωM

−ωM
e
−jk π

ωM
ω
ejωtdω

)
. (13)

The integral in parentheses is an old acquaintance of ours: It is the inverse Fourier transform of
a box function, multiplied by the factor e−jk

π
ωM

ω . That is, we have to find the inverse Fourier
transform of the following spectrum:

e
−jk π

ωM
ω
BωM (ω), (14)

where BωM (ω) is the box function of height 1 and width 2ωM , centered at the origin.

The inverse Fourier transform of the box function is the sinc:

bωM (t) =
ωM
π

sinc
(
ωM t

π

)
, (15)

where, as defined in class, sinc(x) = (sin(πx)) /(πx) .

But by the time shifting property of the Fourier transform, the inverse Fourier transform of

e
−jk π

ωM
ω
BωM (ω) (16)

3



is simply

bωM

(
t− k π

ωM

)
=

ωM
π

sinc
(
ωM
π

(
t− k π

ωM

))
(17)

=
ωM
π

sinc
(ωM
π
t− k

)
(18)

Using this in Equation (13), we get

s(t) =
∞∑

k=−∞
s(kπ/ωM ) sinc

(ωM
π
t− k

)
. (19)

Hence, to reconstruct s(t) from the samples, we simply add up shifted copies of the sinc function,
each weighted by the corresponding sample.
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