Homework 10 Solutions
 GSI: Omar Bakr

Problem 1(Inverse Laplace.)
OWN 9.22 (c)

$$
X(s)=\frac{s+1}{(s+1)^{2}+9}, \Re e\{s\}<-1
$$

Since $X(s)$ is left sided, from Table 9.2 in OWN:

$$
x(t)=-\left[e^{-t} \cos 3 t\right] u(-t)
$$

OWN 9.22 (e)

$$
\begin{gathered}
X(s)=\frac{s+1}{s^{2}+5 s+6},-3<\Re e\{s\}<-2 \\
\Rightarrow X(s)=\frac{s+1}{(s+2)(s+3)}=\frac{-1}{s+2}+\frac{2}{s+3} \\
x(t)=2 e^{-3 t} u(t)+e^{-2 t} u(-t)
\end{gathered}
$$

OWN 9.22 (g)

$$
\begin{gathered}
X(s)=\frac{s^{2}-s+1}{(s+1)^{2}}, \Re e\{s\}>-1 \\
\Rightarrow X(s)=\frac{s^{2}+2 s+1-3 s}{(s+1)^{2}}=1-\frac{3 s}{(s+1)^{2}} \\
\Rightarrow x(t)=\delta(t)-3 \frac{d}{d t}\left\{t e^{-t} u(t)\right\} \\
x(t)=\delta(t)-3 e^{-t} u(t)+3 t e^{-t} u(t)
\end{gathered}
$$

Problem 2(Region of convergence.)
OWN 9.23. The four pole-zero plots shown may have the following possible ROCs:

- Top Left (TL): $\Re\{s\}<-2$ or $-2<\Re\{s\}<2$ or $\Re\{s\}>2$
- Top Right (TR): $\Re\{s\}<-2$ or $\Re\{s\}>-2$
- Bottom Left (BL): $\Re\{s\}<2$ or $\Re\{s\}>2$
- Bottom Right (BR): Entire s-plane

Also, suppose that the signal $x(t)$ has Laplace transform $X(s)$ with ROC R

- (1)

If $x(t) e^{-3 t}$ is absolutely integrable, then the ROC of $x(t)$ must contain the line $\Re\{s\}=3$. This can be seen by looking at the definition of the ROC in equation 9.36 in OWN. The ROC R of $x(t)$ is:
(TL) $\Re\{s\}>2,(\mathrm{TR}) \Re\{s\}>-2,(\mathrm{BL}) \Re\{s\}>2,(\mathrm{BR})$ Entire s-plane

- (2)

We know from Table 9.2 that $e^{-t} u(t)$ has Laplace transform $\frac{1}{s+1}$ with ROC $\Re\{s\}>-1$. From Table 9.1, the Laplace transform of $x(t) \star\left[e^{-t} u(t)\right]$ is

$$
\frac{X(s)}{s+1}
$$

with ROC $R_{2}=R \cap[\Re\{s\}>-1]$. If $x(t) \star\left[e^{-t} u(t)\right]$ is absolutely integrable, then R_{2} must include the $j \omega$ axis, which means that R must include the $j \omega$ axis. The ROC R is:
(TL) $-2<\Re\{s\}<2,(\mathrm{TR}) \Re\{s\}>-2,(\mathrm{BL}) \Re\{s\}<2$, (BR) Entire s-plane

- (3)

If $x(t)=0$ for $t>1$, then $x(t)$ is left-sided or finite duration. This implies that if $\Re\{s\}=\sigma_{1}$ is in the ROC, then all values of s for which $\Re\{s\}<\sigma_{1}$ will also be in the ROC. The ROC R is:
(TL) $\Re\{s\}<-2,(\mathrm{TR}) \Re\{s\}<-2$, (BL) $\Re\{s\}<2$, (BR) Entire s-plane

- (4)

If $x(t)=0$ for $t<-1$, then $x(t)$ is right-sided or finite duration. This implies that if $\Re\{s\}=\sigma_{1}$ is in the ROC, then all values of s for which $\Re\{s\}>\sigma_{1}$ will also be in the ROC. The ROC R is: (TL) $\Re\{s\}>2,(\mathrm{TR}) \Re\{s\}>-2,(\mathrm{BL}) \Re\{s\}>2,(\mathrm{BR})$ Entire s-plane

Problem 3(An LTI system.)

- (a)

$$
H(s)=\frac{5(s-3)}{(s+2)\left(s^{2}-2 s+5\right)}
$$

There is a zero at $s=3$, and poles at $s=-2$ and $s=1 \pm j 2$. The pole/zero diagram is shown in the following figure.

- (b)

Because $H(s)=Y(s) / X(s)$, we can write $Y(s)(s+2)\left(s^{2}-2 s+5\right)=5(s-3) X(s)$, which can be expanded as

$$
s^{3} Y(s)+s Y(s)+10 Y(s)=5 s X(s)-15 X(s)
$$

The time-domain differential equation is given by

$$
\frac{d^{3} y(t)}{d t^{3}}+\frac{d y(t)}{d t}+10 y(t)=5 \frac{d x(t)}{d t}-15 x(t)
$$

- (c)

First we find the partial fraction expansion of the transfer function.

$$
\begin{gathered}
H(s)=\frac{5 s-15}{s^{3}+s+10}=\frac{5(s-3)}{(s+2)\left(s^{2}-2 s+5\right)} \\
=\frac{A}{s+2}+\frac{B s+C}{s^{2}-2 s+5} \\
A=\frac{-25}{13}, B=\frac{25}{13}, C=\frac{-35}{13} \\
\Rightarrow H(s)=\frac{1}{13}\left[\frac{-25}{s+2}+\frac{25 s-35}{(s-1)^{2}+2^{2}}\right] \\
\Rightarrow H(s)=\frac{1}{13}\left[\frac{-25}{s+2}+\frac{25(s-1)}{(s-1)^{2}+2^{2}}-\frac{10}{(s-1)^{2}+2^{2}}\right]
\end{gathered}
$$

If the system is causal, then the ROC is the right half plane $\Re\{s\}>1$. Using the transform pairs in Table 9.2, we see that the impulse response is given by

$$
h(t)=-\frac{25}{13} e^{-2 t} u(t)+\frac{25}{13} e^{t} \cos (2 t) u(t)-\frac{5}{13} e^{t} \sin (2 t) u(t)
$$

The resulting system is not stable, since the ROC does not contain the $j \omega$ axis.

- (d)

If the system is stable, then the ROC must contain the $j \omega$ axis, hence the ROC is $-2<\Re\{s\}<1$. To find the inverse transform, we first combine transform pair 11 in Table 9.2 with the time scaling property in Table 9.1, with $a=-1$, to see that the function $\cos \left(\omega_{0} t\right) u(-t)$ has Laplace transform

$$
\frac{(-s)}{(-s)^{2}+\omega_{0}^{2}}=\frac{-s}{s^{2}+\omega_{0}^{2}}
$$

and ROC $\Re\{s\}<0$. Then, applying the shifting in the s-domain property from Table 9.1 , with $s_{0}=1$, we see that the function $e^{t} \cos \left(\omega_{0} t\right) u(-t)$ has Laplace transform

$$
\frac{-(s-1)}{(s-1)^{2}+\omega_{0}^{2}}
$$

with ROC $\Re\{s\}<1$. Using similar reasoning, we see that the function $-e^{t} \sin \left(\omega_{0} t\right) u(-t)$ has Laplace transform

$$
\frac{\omega_{0}}{(s-1)^{2}+\omega_{0}^{2}}
$$

with ROC $\Re\{s\}<1$. Therefore, the impulse response of the system is given by

$$
h(t)=-\frac{25}{13} e^{-2 t} u(t)-\frac{25}{13} e^{t} \cos (2 t) u(-t)+\frac{5}{13} e^{t} \sin (2 t) u(-t)
$$

This is clearly not a causal system.

Problem 4(System analysis.)
OWN 9.32
If $x(t)=e^{2 t}$ produces $y(t)=(1 / 6) e^{2 t}$, then $H(2)=1 / 6$. By taking the Laplace transform of both sides of the differential equation, we find that

$$
H(s)=\frac{\frac{1}{s+4}+b \frac{1}{s}}{s+2}=\frac{s+b(s+4)}{s(s+4)(s+2)}
$$

Substituting in $H(2)=1 / 6$, we find that $b=1$. Therefore,

$$
H(s)=\frac{2(s+2)}{s(s+4)(s+2)}=\frac{2}{s(s+4)}
$$

Problem 5 (A simple fact about Laplace transforms.)

- OWN 9.41(a)

The Laplace transform of a signal $y(t)=x(-t)$ is given by

$$
\begin{aligned}
Y(s) & =\int_{-\infty}^{\infty} x(-t) e^{-s t} d t \\
& =\int_{-\infty}^{\infty} x(t) e^{s t} d t \\
& =X(-s)
\end{aligned}
$$

If $x(t)=x(-t)$, then $X(s)=X(-s)$

- OWN 9.41(c), Plot (a)

For a signal to be even, it must be either two-sided or finite duration. Thus, if $X(s)$ has poles, the ROC must be a strip in the s-plane.
For plot (a), we have

$$
X(s)=\frac{A s}{(s+1)(s-1)}
$$

Therefore

$$
X(-s)=\frac{-A s}{(s-1)(s+1)}=-X(s)
$$

This means that this plot cannot correspond to an even function $x(t)$. (It actually corresponds to an odd function.)

- OWN 9.41(c), Plot (b)

We see that the ROC cannot be chosen to be a strip in the s-plane. Therefore, the plot cannot correspond to an even function.

- OWN 9.41(c), Plot (c)

We have

$$
X(s)=\frac{A(s-j)(s+j)}{(s-1)(s+1)}=\frac{A\left(s^{2}+1\right)}{s^{2}-1}
$$

Thus

$$
X(-s)=\frac{A\left(s^{2}+1\right)}{s^{2}-1}=X(s)
$$

This means that $x(t)$ can be an even function, as long as the ROC is chosen to be $-1<\Re\{s\}<1$

- OWN 9.41(c), Plot (c)

We see that the ROC cannot be chosen to be a strip in the s-plane. Therefore, the plot cannot correspond to an even function.

Problem 6(Deconvolution.)

OWN 9.47

$$
\begin{gathered}
y(t)=e^{-2 t} u(t) \Leftrightarrow Y(s)=\frac{1}{s+2}, \Re e\{s\}>-2 \\
H(s)=\frac{s-1}{s+1}, \Re e\{s\}>-1
\end{gathered}
$$

(a)
both $y(t)$ and $h(t)$ are both causal and stable.

$$
\Rightarrow X(s)=\frac{Y(s)}{H(s)}=\frac{(s+1)}{(s+2)(s-1)}=\frac{1}{3(s+2)}+\frac{2}{3(s-1)}
$$

$X(s)$ has two poles located at $s=1$ and $s=-2$. Clearly, there are three possible choices for $x(t)$ depending on the ROC.

$$
\begin{gathered}
\Rightarrow X_{1}(s)=\frac{1}{3(s+2)}+\frac{2}{3(s-1)}, \Re e\{s\}>1 \\
\Rightarrow x_{1}(t)=\frac{1}{3} e^{-2 t} u(t)+\frac{2}{3} e^{t} u(t) \\
\Rightarrow X_{2}(s)=\frac{1}{3(s+2)}+\frac{2}{3(s-1)},-2<\Re e\{s\}<1 \\
\Rightarrow x_{2}(t)=\frac{1}{3} e^{-2 t} u(t)-\frac{2}{3} e^{t} u(-t) \\
\Rightarrow X_{3}(s)=\frac{1}{3(s+2)}+\frac{2}{3(s-1)}, \Re e\{s\}<-2 \\
\Rightarrow x_{3}(t)=-\frac{1}{3} e^{-2 t} u(-t)-\frac{2}{3} e^{t} u(-t)
\end{gathered}
$$

However, $x_{3}(t)$ is not a possible input since its ROC does not overlap with the ROC of $y(t)$. Therefore, only $x_{1}(t)$ and $x_{2}(t)$ can generate $y(t)$ at the output.
(b)

If we know that $x(t)$ is stable, then we have only one option: $x_{2}(t)$.
(c)

If both the input $y(t)$ and the filter $g(t)$ are stable, then $x(t)=y(t) * g(t)$ is also stable. Therefore, the output must be $x_{2}(t)$. Also, since $x_{2}(t)$ is a left-sided signal, $g(t)$ cannot be causal.

$$
\Rightarrow G(s)=\mathcal{L T}\{g(t)\}=\frac{X(s)}{Y(s)}=\frac{1}{3}+\frac{2(s+2)}{3(s-1)}
$$

Since $G(s)$ has one pole at $s=1$, the ROC must be $\Re e\{s\}<1$ (for stability).

$$
\begin{gathered}
\Rightarrow g(t)=\frac{1}{3} \delta(t)+\frac{2}{3}\left(-2 e^{t} u(-t)+\frac{d}{d t}\left\{-e^{t} u(-t)\right\}\right. \\
=\frac{1}{3} \delta(t)-2 e^{t} u(-t)+\frac{2}{3} \delta(t)=\delta(t)-2 e^{t} u(-t) \\
\Rightarrow g(t) * y(t)=e^{-2 t} u(t)+\int_{-\infty}^{\infty}-2 e^{-2 \tau} u(\tau) e^{t-\tau} u(\tau-t) d \tau \\
\int_{-\infty}^{\infty}-2 e^{-2 \tau} u(\tau) e^{t-\tau} u(\tau-t) d \tau=-2 e^{t} \int_{0}^{\infty} e^{-3 \tau} u(\tau-t) d \tau= \begin{cases}-2 e^{t} \int_{t}^{\infty} e^{-3 \tau} d \tau=\frac{-2}{3} e^{-2 t} & \text { for } t>0 \\
-2 e^{t} \int_{0}^{\infty} e^{-3 \tau} d \tau=\frac{-2}{3} e^{t} & \text { for } t \leqslant 0\end{cases} \\
=\frac{-2}{3}\left(e^{-2 t} u(t)+e^{t} u(-t)\right) \\
\Rightarrow g(t) * y(t)=e^{-2 t} u(t)-\frac{2}{3}\left(e^{-2 t} u(t)+e^{t} u(-t)\right)=\frac{1}{3} e^{-2 t} u(t)-\frac{2}{3} e^{t} u(-t)=x_{2}(t)
\end{gathered}
$$

Problems 7/8(Stability and Causality.)

Since $h(t)$ is real, its poles and zeros must occur in complex conjugate pairs. Therefore, the known poles and zeros of $H(s)$ are shown in the following figure.

Since $H(s)$ has exactly 2 zeros at infinity, $H(s)$ has at least two more unknown finite poles. If $H(s)$ has more than 4 poles, then it will have a zero at some finite location for every additional pole. Furthermore, because $h(t)$ is causal and stable, all poles of $H(s)$ must lie in the left half of the s-plane and the ROC must contain the $j \omega$ axis.

- OWN 9.51(a)

This is true. Consider $g(t)=h(t) e^{-3 t}$. The Laplace transform $G(s)=H(s+3)$ will have a ROC that is equal to the ROC of $H(s)$ shifted to the left by 3 . Clearly, the ROC of $G(s)$ will still contain the $j \omega$ axis.

- OWN 9.51(b)

There is insufficient information. As stated before, $H(s)$ has at least two more unknown poles. We do not know where the rightmost pole is, so we cannot determine the ROC of $H(s)$.

- OWN 9.51(c)

This is true. Since $H(s)$ is rational, it may be expressed as the ratio of two polynomials in s. Furthermore, since $h(t)$ is real, the coefficients of these polynomials will be real. We can write

$$
\frac{Y(s)}{X(s)}=H(s)=\frac{P(s)}{Q(s)}
$$

where $P(s)$ and $Q(s)$ are polynomials in s. The differential equation relating $y(t)$ and $x(t)$ is found by taking the inverse Laplace transform of $Y(s) Q(s)=X(s) P(s)$. Clearly, this differential equation will have only real coefficients.

- OWN 9.51(d)

This is false. Because $H(s)$ has two zeros at $s=\infty$, the limit of $H(s)$ as s goes to ∞ will be 0 .

- OWN 9.51(e)

This is true. As stated at the beginning of the problem, $H(s)$ has two zeros at infinity and at least two finite zeros, so $H(s)$ must have at least four poles.

- OWN 9.51(f)

There is insufficient information. As stated earlier, $H(s)$ may have other zeros, including zeros on the $j \omega$ axis.

- OWN 9.51(g)

This is false. We know that

$$
e^{3 t} \sin t=\frac{1}{j 2} e^{(3+j) t}=\frac{1}{j 2} e^{(3-j) t}
$$

Both $e^{(3+j) t}$ and $e^{(3-j) t}$ are eigenfunctions of the LTI system. The response of the system to these two inputs will be $H(3+j) e^{(3+j) t}$ and $H(3-j) e^{(3-j) t}$, respectively. Because $H(s)$ has zeros at $3 \pm j$, the output of the system to the two exponentials has to be zero. Therefore, the response of the system to the input $e^{3 t} \sin t$ will be zero.

Problems 9 (LT Properties.)

Let $z(t)$ be the unit step response of $h(t)$.

$$
\begin{gathered}
\Rightarrow z(t)=u(t) * h(t) \\
\Rightarrow Z(s)=\mathcal{L} \mathcal{T}\{z(t)\}=\frac{H(s)}{s}
\end{gathered}
$$

The steady state value $z(\infty)=\frac{1}{3}$. From Table 9.1 in OWN:

$$
\begin{aligned}
\lim _{t \rightarrow \infty} z(t) & =\lim _{s \rightarrow 0} s Z(s)=\lim _{s \rightarrow 0} H(s) \\
H(0) & =\frac{1}{3} \quad \text { by continuity }
\end{aligned}
$$

Let $y(t)=x(t) * h(t)$, where $x(t)=e^{t} u(t)$.

$$
Y(s)=\mathcal{L T}\{y(t)\}=H(s) X(s)=\frac{H(s)}{s-1}
$$

Since $y(t)$ is causal and absolute.y integrable (stable). The ROC of $y(t)$ must contain the imaginary axis. Therefore, there cannot be a pole at $s=1$. Therefore, $H(s)$ has to contain a zero at $s=1$.
Let $w(t)=\frac{d^{2} h(t)}{d t^{2}}+5 \frac{d h(t)}{d t}+6 h(t)$. Since $w(t)$ is of finite duration, the ROC must span the entire s-plane.

$$
W(s)=\mathcal{L} \mathcal{T}\{w(t)\}=s^{2} H(s)+5 s H(s)+6 H(s)=(s+2)(s+3) H(s)
$$

Since $W(s)$ cannot contain any poles, $H(s)$ can have at most two poles at $s=-2$ and $s=-3$. However, we are also given that the number of zeros in $H(s)$ is one less the number of poles. Therefore, $H(s)$ has exactly one zero at $s=1$ and two poles at $s=-2$ and $s=-3$.

$$
\begin{gathered}
H(s)=\frac{K(s-1)}{(s+2)(s+3)} \\
\Rightarrow H(0)=\frac{-K}{6}=\frac{1}{3} \Rightarrow K=-2 \\
\Rightarrow H(s)=\frac{-2(s-1)}{(s+2)(s+3)}, \Re e\{s\}>-2
\end{gathered}
$$

