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Homework 12 Solutions

Problem 1 (z-Transform Basics)

(a)

OWN 10.21 (b)

The z-transform of the discrete-time signal x[n] = δ[n− 5] can be found in OWN Table 10.2 as

X(z) = z−5, with ROC all z except 0.

Notice that X(z) has 5 poles at z = 0 . Recall that the discrete-time Fourier transform of x[n] is
X(ejω) = X(z)|z=ejω . Thus the Fourier transform of x[n] exists because the ROC of X(z) includes the
unit circle z = ejω .

Im

Re

OWN 10.21 (h)

We find the z-transform of x[n] =
(

1
3

)n−2
u[n−2] by first defining y[n] =

(
1
3

)n
u[n] . According to OWN

Table 10.2, the z-transform of y[n] is Y (z) = 1
1− 1

3 z−1 with ROC |z| > 1
3 . Then by the time shifting

property of the z-transform, given in OWN Table 10.1, the z-transform of x[n] = y[n− 2] is

X(z) =
z−2

1− 1
3z−1

=
1

z
(
z − 1

3

) with ROC |z| > 1
3
.

X(z) has poles at z = 0 and z = 1
3 . Since the ROC of X(z) includes the unit circle, the Fourier

transform exists.
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1/3

Re

Im

0

(b)

OWN 10.22 (b)

We can rewrite x[n] as

x[n] = n

(
1
2

)|n|
= n

(
1
2

)n

u[n] + n

(
1
2

)−n

u[−n− 1]

= n

(
1
2

)n

u[n] + n (2)n
u[−n− 1].

In OWN Table 10.2, we find the z-transform of n
(

1
2

)n
u[n] is

1
2 z−1

(1− 1
2 z−1)2 , with ROC |z| > 1

2 . Also in

Table 10.2, we find the z-transform of n2nu[−n−1] is − 2z−1

(1−2z−1)2
, with ROC |z| < 2 . Thus by linearity

(see OWN Table 10.1),

X(z) =
1
2z−1(

1− 1
2z−1

)2 − 2z−1

(1− 2z−1)2

= −3
2

z(z + 1)(z − 1)
(z − 1

2 )2(z − 2)2

with ROC 1
2 < |z| < 2 . Since the ROC includes the unit circle, the Fourier transform of x[n] exists.

2
Re

Im

1/2

OWN 10.22 (d)
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We can rewrite x[n] as

x[n] = 4n cos(
2π

6
n +

π

4
)u[−n− 1]

=
1
2

(
ej( 2π

6 n+ π
4 ) + e−j( 2π

6 n+ π
4 )
)

4nu[−n− 1]

=
1
2
ej π

4 ej( 2π
6 n)4nu[−n− 1] +

1
2
e−j π

4 e−j( 2π
6 n)4nu[−n− 1].

In OWN Table 10.2, we find the z-transform of y[n] = 4nu[−n − 1] is Y (z) = − 1
1−4z−1 , with ROC

|z| < 4 . The scaling in the z-domain property, given in OWN Table 10.1, states that the z-transform of
ejω0ny[n] is Y (e−jω0z) . Therefore, by linearity, the z-transform of x[n] is

X(z) = −
1
2ejπ/4

1− 4ej2π/6z−1
−

1
2e−jπ/4

1− 4e−j2π/6z−1

= −
z(cos(π

4 )z − 4 cos( π
12 ))

(z − 4ej2π/6)(z − 4e−j2π/6)

with ROC |z| < 4 . Since the ROC includes the unit circle, the Fourier transform of x[n] exists.

4

Im

Re

Problem 2 (Inverse z-Transform)

(a)

OWN 10.23 (i)

By partial fraction expansion, we rewrite X(z) as

X(z) =
1− z−1

1− 1
4z−2

=
1− z−1(

1− 1
2z−1

) (
1 + 1

2z−1
)

=
− 1

2

1− 1
2z−1

+
3
2

1 + 1
2z−1

In OWN Table 10.2, we find the inverse z-transform of 1
1−αz−1 with ROC |z| > |α| is αnu[n] . Thus by

linearity,

x[n] = −1
2

(
1
2

)n

u[n] +
3
2

(
−1

2

)n

u[n].

OWN 10.23 (ii)
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Again, we rewrite X(z) using partial fraction expansion.

X(z) =
1− z−1

1− 1
4z−2

=
− 1

2

1− 1
2z−1

+
3
2

1 + 1
2z−1

Now we find in OWN Table 10.2, that the inverse z-transform of 1
1−αz−1 with ROC |z| < |α| is

−αnu[−n− 1] . Thus by linearity,

x[n] =
1
2

(
1
2

)n

u[−n− 1]− 3
2

(
−1

2

)n

u[−n− 1].

(b)

OWN 10.26 (a)

X(z) =
1(

1− 1
2z−1

)
(1− z−1)

=
z2(

z − 1
2

)
(z − 1)

OWN 10.26 (b)

X(z) = z2

(
−2

z − 1
2

+
2

z − 1

)
= 2z

(
− z

z − 1
2

+
z

z − 1

)

OWN 10.26 (c)

Since x[n] is left-sided, the ROC of X(z) is |z| < 1
2 . In OWN Table 10.2, we find the inverse z-transform

of Y (z) = 1
1−αz−1 with ROC |z| < |α| is y[n] = −αnu[−n− 1] . By the time shifting property, in OWN

Table 10.1, the inverse z-transform of zY (z) is y[n + 1] . Thus by linearity, the inverse z-transform of
X(z) is

x[n] = 2
(

1
2

)n+1

u[−n− 2]− 2u[−n− 2].

Problem 3 (Properties of the z-Transform)

OWN 10.44 (a)

By the time shifting and linearity properties in OWN Table 10.1, the z-transform of xa[n] = x[n]−x[n−1]
is

Xa(z) = X(z)− z−1X(z) =
z − 1

z
X(z)

with ROC R with the possible deletion of z = 0 .

OWN 10.44 (b)

4



We can find the z-transform of

xb[n] =
{

x[n
2 ] n even

0 n odd

by using the time expansion property in OWN Table 10.1, as

Xb(z) = X(z2) with ROC R1/2 = {z : z2 ∈ R}.

Alternatively, we can find the z-transform by evaluating the definition

Xb(z) =
∞∑

n=−∞
xb[n]z−n

=
∑

n even

x[
n

2
]z−n

=
∞∑

m=−∞
x[m]z−2m

= X(z2).

OWN 10.44 (c)

Define
g[n] =

1
2
(x[n] + (−1)nx[n]).

Observe that g[2n] = x[2n] , and that g[n] = 0 for n odd. By the scaling in the z-domain property and
the linearity property in OWN Table 10.1, the z-transform of g[n] is G(z) = 1

2X(z) + 1
2X(−z) , with

ROC R . Now we find the z-transform of xc[n] = x[2n] by evaluating the definition of the z-transform,

Xc(z) =
∞∑

n=−∞
xc[n]z−n

=
∞∑

n=−∞
x[2n]z−n

=
∞∑

n=−∞
g[2n]z−n

=
∑

m even

g[m]z−m/2

=
∞∑

m=−∞
g[m]z−m/2

= G(z1/2)

=
1
2
X(z1/2) +

1
2
X(−z1/2)

and the ROC is R .

Problem 4 (Properties of the z-Transform: minimum-phase system.)
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OWN 10.58

Consider a causal and stable system with system function H(z) . Let its inverse system have the system
function Hi(z) . The poles of H(z) are the zeros of Hi(z) and the zeros of H(z) are the poles of Hi(z) .

For H(z) to correspond to a causal and stable system, all of its poles must be within the unit circle.
This means all the zeros of Hi(z) must be within the unit circle. Similarly, for Hi(z) to correspond to
a causal and stable system, all of its poles must be within the unit circle. That means all the zeros of
H(z) must be within the unit circle.

Therefore, all poles and zeros of a minimum-phase system must lie within the unit circle.

Problem 5 (Discrete-time LTI system analysis.)

x[n] - g - g
z−1

�1/(2b)
6
−

w[n] -

z−2

�b
2

6
−

y[n]

To find the overall transfer function H(z) of this causal LTI system, we examine the input-output
relationships of the sub-systems.

W (z) = X(z)− 1
2b

z−1W (z)

W (z)
(

1 +
1
2b

z−1

)
= X(z)

W (z)
X(z)

=
1

1 + 1
2bz

−1

Y (z) = W (z)− b2z−2Y (z)
Y (z)

(
1 + b2z−2

)
= W (z)

Y (z)
W (z)

=
1

1 + b2z−2

H(z) =
Y (z)
X(z)

=
Y (z)
W (z)

W (z)
X(z)

=
1(

1 + 1
2bz

−1
)
(1 + b2z−2)

=
z3(

z + 1
2b

)
(z + bj)(z − bj)

H(z) has three zeros located at z = 0 , and three poles located at z = − 1
2b ,−bj, bj respectively. We

know the system is causal and rational, which implies the ROC must be outside of the pole with the
largest magnitude. Since the system is stable iff the ROC includes the unit circle, all the poles of H(z)
must be inside the unit circle.

|bj| < 1 ⇔ |b| < 1
| − bj| < 1 ⇔ |b| < 1∣∣∣∣− 1

2b

∣∣∣∣ < 1 ⇔ 1
2

< |b|
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Therefore H(z) is stable iff
1
2

< |b| < 1.

Problem 6 (Discrete-time LTI system.)

OWN Problem 10.34

y[n] = y[n− 1] + y[n− 2] + x[n− 1]

Taking the z-transform of this equation, we get

Y (z) = z−1Y (z) + z−2Y (z) + z−1X(z)

H(z) =
Y (z)
X(z)

=
z−1

1− z−1 − z−2
=

z

z2 − z − 1

=
z(

z − 1+
√

5
2

)(
z − 1−

√
5

2

)
Therefore H(z) has a zero at z = 0 and poles at z = 1±

√
5

2 .

Since the system is causal, the ROC of H(z) will be outside the circle containing its outermost pole.
The pole-zero map and ROC are depicted below.

(b)

The partial fraction expansion of H(z) is

H(z) = − 1/
√

5

1− 1+
√

5
2 z−1

+
1/
√

5

1− 1−
√

5
2 z−1

.

Therefore

h[n] = − 1√
5

(
1 +

√
5

2

)n

u[n] +
1√
5

(
1−

√
5

2

)n

u[n].

7



(c)

The system is unstable, as its ROC does not contain the unit circle. The instability is also apparent in
h[n] , as the − 1√

5

(
1+
√

5
2

)n

u[n] term will grown indefinitely as n →∞ .

To make the system stable, the ROC must contain the unit circle. The ROC should then be:
√

5−1
2 <

|z| <
√

5+1
2 . In this case, we get

h[n] =
1√
5

(
1 +

√
5

2

)n

u[−n− 1] +
1√
5

(
1−

√
5

2

)n

u[n].

Problem 7 (Discrete-time LTI system analysis.)

OWN Problem 10.47

(a)

From Clue 1, we know that H(−2) = 0 . From Clue 2, we know that when

X(z) =
1

1− 1
2z−1

, |z| > 1
2

then

Y (z) = 1 +
a

1− 1
4z−1

=
1− 1

4z−1 + a

1− 1
4z−1

, |z| > 1
4

Therefore,

H(z) =
Y (z)
X(z)

=

(
1− 1

4z−1 + a
) (

1− 1
2z−1

)
1− 1

4z−1
, |z| > 1

4

Substituting z = −2 into this equation, and using the fact that H(−2) = 0 , we find that

a = −9
8

(b)

The response to the signal x[n] = 1 = 1n will be y[n] = H(1)x[n] .

y[n] = H(1) = −1
4

Problem 8 (Unilateral Z-Transform.)

OWN Problem 10.42 (b)

Taking the unilateral z-transform of both sides of the difference equation,

Y(z)− 1
2
z−1Y(z)− 1

2
y[−1] = X (z)− 1

2
z−1X (z).

To find the zero-input response, set X(z) = 0 and we get Yzi(z) = 0 . Taking the inverse unilateral
z-transform gives the zero-input response yni[n] = 0 .
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Now, since it is given that x[n] = u[n] , we have X (z) = 1
1−z−1 , with ROC |z| > 1 .

To find the zero-state response, set y[−1] = 0 and we get

Y(z)− 1
2
z−1Y(z) =

1
1− z−1

−
1
2z−1

1− z−1
.

Therefore Y(z) = 1
1−z−1 .

The inverse unilateral z-transform gives the zero-state response yzs[n] = u[n] .

OWN Problem 10.42 (c)

As in (b), taking the unilateral z-transform of both sides of the difference equation, we get

Y(z)− 1
2
z−1Y(z)− 1

2
y[−1] = X (z)− 1

2
z−1X (z).

However, given the different initial state, we get the following when we try to find the zero-input response
by setting X (z) = 0 :

Y(z) =
1
2

1− 1
2z−1

.

The inverse unilateral z-transform then gives the zero-input response yzi[n] =
(

1
2

)n+1
u[n] .

Since the input x[n] is the same as the one used in part (b), the zero-state response is still yzs[n] = u[n] .

Comments: different initial conditions will result in different zero-input responses even though the dif-
ferential equations are the same.

Problem 9 (Fibonacci Numbers.)

(a)

We are given that F1 = 1 , F2 = 1 , Fn+2 = Fn+1 + Fn ∀n ≥ 1 .

We would like to find an explicit formula for Fn . We can use the unilateral Z-Transform to find it. One
consequence of this method is that our function will be 0∀n < 0 . We would like a function that can
generate F1 onwards so let’s set x[n] = Fn+1 so that x[0] = F1 .

We then have
x[n + 1] = x[n] + x[n− 1].

Taking unilateral Z-Transform we get

zX(z)− zx[0] = X[z] + z−1X(z) + x[−1].

Note that x[−1] = F0 = 0 since F0 + F1 = F2 and F1 = F2 = 1 . Plugging in the values for x[−1] and
x[0] , we get

zX(z)− z = X[z] + z−1X(z).

∴ X(z) =
z

z − 1− z−1
=

1
1− z−1 − z−2

=
1(

1− 1−
√

5
2 z−1

)(
1− 1+

√
5

2 z−1
) =

A

1− 1+
√

5
2 z−1

+
B

1− 1−
√

5
2 z−1

.

Solving for A and B , we get A = 5+
√

5
10 and B = 5−

√
5

10 .
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∴ X(z) =
5 +

√
5

10
· 1

1− 1+
√

5
2 z−1

+
5−

√
5

10
· 1

1− 1−
√

5
2 z−1

Taking unilateral inverse Z-Transform, we get

x[n] =
5 +

√
5

10
·

(
1 +

√
5

2

)n

u[n] +
5−

√
5

10
·

(
1−

√
5

2

)n

u[n].

By definition, Fn = x[n− 1] .

∴ Fn =
5 +

√
5

10
·

(
1 +

√
5

2

)n−1

+
5−

√
5

10
·

(
1−

√
5

2

)n−1

for n ≥ 1.

Note that there are many different possible formulas for x[n] (thus also for Fn ), depending on what we
choose for our “starting point” at n = 0 .

(b)

Using the formula from above, F21 = 10946 .

Problem 10 (Root locus of discrete-time systems.)

T (z) =
1

z+2

1 + K 1
z+2

1
z

=
z

z2 + 2z + K
.

The poles of the system are therefore the roots of z2 + 2z + K = 0 .

• If K ≤ 1 , the poles are at −1±
√

1−K .

• If K ≥ 1 , the poles are at −1± j
√

K − 1 .

Now let’s first look at the case when K < 0 .

If K < 0 , the poles are at −1±
√

1−K .

• As K varies from 0 to −∞ , −1 +
√

1−K will vary from −1 +
√

1−K|K=0 = 0 to −1 +√
1−K|K=−∞ = +∞ .

• As K varies from 0 to −∞ , −1 −
√

1−K will vary from −1 −
√

1−K|K=0 = −2 to −1 −√
1−K|K=−∞ = −∞ .

If K > 0 , there are two cases:

1. 0 < K < 1 : the poles are at −1±
√

1−K .

• As K varies from 0 to 1 , −1 +
√

1−K will vary from −1 +
√

1−K|K=0 = 0 to −1 +√
1−K|K=1 = −1 .

• As K varies from 0 to 1 , −1 −
√

1−K will vary from −1 −
√

1−K|K=0 = −2 to −1 −√
1−K|K=1 = −1 .

2. K > 1 : the poles are at −1± j
√

K − 1 .
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The root locus is the following:

The system is stable if both poles are inside unit circle. In this case, there are no values of K such that
both poles are inside the unit circle.

Below is the answer to OWN Problem 11.25 (a) in case you are interested.

The system given is

G(z)H(z) =
z − 1
z2 − 1

4

=
z − 1

(z + 1
2 )(z − 1

2 )
.

Therefore the system has poles at ± 1
2 and a zero at 1.

The poles of the overall system satisfy G(z)H(z) = − 1
K , which means solving for

z − 1
(z + 1

2 )(z − 1
2 )

= − 1
K

.

This can be rewritten as
z2 + Kz − (K +

1
4
) = 0. (1)

The roots are −K±
√

K2+4K+1
2 if K2 + 4K + 1 ≥ 0 and −K±j

√
−K2−4K−1

2 if K2 + 4K + 1 ≤ 0 .

Solving K2 + 4K + 1 = 0 , we know that K2 + 4K + 1 ≥ 0 if K ≥ −2 +
√

3 or K ≤ −2 −
√

3 and
K2 + 4K + 1 ≤ 0 if −2−

√
3 ≤ K ≤ −2 +

√
3 .

Therefore the roots are −K±
√

K2+4K+1
2 if K ≥ −2 +

√
3 or K ≤ −2 −

√
3 and −K±j

√
−K2−4K−1

2 if
−2−

√
3 ≤ K ≤ −2 +

√
3 .

Let’s first look at when K > 0 .

We see that K2 + 4K + 1 > 0 if K > 0 . Therefore the roots for Equation (1) are just −K±
√

K2+4K+1
2 .

• As K varies from 0 to +∞ , −K−
√

K2+4K+1
2 varies from − 1

2 (evaluated at K = 0 to −∞
(evaluated at K = +∞ ).

• As K varies from 0 to +∞ , −K+
√

K2+4K+1
2 varies from +1

2 (evaluated at K = 0 to 1 (evaluated
at K = +∞ ).

The root locus for K > 0 is shown below.
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Let’s now look at the when K < 0 .

If K < 0 , we have to consider several cases.

1. When −2+
√

3 < K < 0 : the roots for Equation (1) are −K±
√

K2+4K+1
2 because K2+4K+1 > 0 .

• As K varies from 0 to −2 +
√

3 , −K+
√

K2+4K+1
2 varies from 1

2 (evaluated at K = 0) to
1−

√
3

2 (evaluated at K = −2 +
√

3 ).

• As K varies from 0 to −2 +
√

3 , −K−
√

K2+4K+1
2 varies from − 1

2 (evaluated at K = 0) to
1−

√
3

2 (evaluated at K = −2 +
√

3 ).

2. When K < −2−
√

3 : the roots for Equation (1) are again −K±
√

K2+4K+1
2 because K2+4K+1 > 0 .

• As K varies from −2 −
√

3 to −∞ , −K+
√

K2+4K+1
2 varies from 1 +

√
3

2 (evaluated at
K = −2−

√
3 ) to +∞ (evaluated at K = −∞ ).

• As K varies from −2 −
√

3 to −∞ , −K−
√

K2+4K+1
2 varies from 1 +

√
3

2 (evaluated at
K = −2−

√
3 ) to 1 (evaluated at K = −∞ ).

3. When −2 −
√

3 < K < −2 +
√

3 : the roots for Equation (1) are now −K±j
√
−K2−4K−1

2 because
K2 + 4K + 1 < 0 . This is a circle of radius

√
3 centered at 1. (This can be seen through showing

‖−K±j
√
−K2−4K−1

2 − 1‖2 = 3 .)

Combining these cases, the root locus for K < 0 is shown below.
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Problem 11 (Pole/Zero plots.)

(a) Pole-zero plot (a) ⇔ magnitude response (5).

A pole at z = a and a zero at z = 1/a will cancel each other’s effects on the magnitude response,
resulting in a constant magnitude response.

(b) Pole-zero plot (b) ⇔ magnitude response (1).

Magnitude response must have two symmetric peaks around ω = π/2 and ω = −π/2 .

(c) Pole-zero plot (c) ⇔ magnitude response (3).

Magnitude response must peak near ω = 0 . Although we might expect two peaks corresponding to two
poles, if the poles are sufficiently close their peaks will merge.

(d) Pole-zero plot (d) ⇔ magnitude response (4).

Magnitude response must approach but not reach 0 at ω = 0 .

(e) Pole-zero plot (e) ⇔ magnitude response (2).

Magnitude response must hit 0 at ω = 0 .
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