
EECS 120 Signals & Systems University of California, Berkeley: Fall 2006
Ramchandran September 14, 2006

Homework 2 Solutions

(send your grades to ee120staff@gmail.com; check the course website for more details)

Problem 1 (Linear Algebra)

Although the purpose of this exercise was for you solve it by hand in order to get gain more familiarity
with matrix operations, you can also do it in Matlab.

(a) |A| is the determinant of matrix A , sometimes referred to as det(A) (only defined for square
matrices). In order to compute the determinant, we need to introduce the concept of a Minor matrix.
A Minor Mij of a matrix A is a submatrix formed by removing the ith row and jth column of A .
Therefore, if A is an n × n matrix then Mij will be (n − 1) × (n − 1) . Also, define a cofactor
Aij = (−1)i+j |Mij | . If we denote aij as the element in the ith row and jth column of A , then we can
compute |A| as follows (we will use the elements and cofactors of the first row, but any row or column
will also be sufficient):

|A| =

n
∑

k=1

a1kA1k

(I didn’t tell you how to compute the determinant of the minors, but you can apply the definition
recusively until you reach a matrix of size 1, in which case the value of the determinant is the same as
the single element).

⇒ |A| =

∣

∣

∣

∣

∣

∣

2 1 2
−4 5 0
4 −7 3

∣

∣

∣

∣

∣

∣

= 58

tr(C) , called the trace of C , is simply the sum of elements in the main diagonal (only defined for square
matrices):

tr(C) =

n
∑

i=1

cii = 3 + 5 − 7 = 1

(b) The rank of matrix is the number of linearly independent rows or columns (turns out to be the same)
in the matrix. A set of vectors is said to be linearly independent when no vector in the set can be
written as a linear combination of other vectors in the set. If you notice, the rows of A fit the definition.
However, the third row of B is the sum of the second row and twice the first row. Therefore, B contains
only two rows (and columns) that are linearly independent.

⇒ rank(A) = 3, rank(B) = 2

(c) Before we go into matrix multiplication, let’s define the dot-product of two vectors −→x and −→y (must
be of the same length) denoted as < −→x ,−→y > or −→x · −→y as:

−→x · −→y =

n
∑

i=1

x∗

nyn
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Two vectors are said to be orthogonal when their dot-product is 0 . The dot-product can also be defined
for vectors with infinite dimensions and continuous vectors (functions), but this usually involves infinite
sums/integrals (more on that later).

The product K3 of two matrices K1K2 is defined only when K1 is m×k and K2 is k×n (the number
of columns in K1 has to equal the number of rows in K2 ); the output matrix K3 will be m × n . The
element in the ith row and jth column of K3 is the dot-product of the ith row of K1 and the jth

column of K2 . In general K1K2 6= K2K1 (it may not be even defined).

⇒ AB =





2 1 2
−4 5 0
4 −7 3









0 1 2 0
−2 2 0 3
−2 4 4 3



 =





−6 12 12 9
−10 6 −8 15
8 2 20 −12





B⊤ is the transpose of matrix B . Rows of B⊤ are the columns of B and vice verca (B⊤
ij = Bji .

⇒ B⊤A =









0 −2 −2
1 2 4
2 0 4
0 3 3













2 1 2
−4 5 0
4 −7 3



 =









0 4 −6
10 −17 14
20 −26 16
0 −6 9









(d) A−1 , the inverse of matrix A (defined only for square matrices), is defined such that A−1A =
AA−1 = I , where I is the identity matrix (ones on the main diagonal and zeros everywhere else) of the
same size as A . The inverse matrix exists only when the matrix has full rank (all the rows are linearly
independent). To compute A−1 , we follow three simple steps:

(1) Replace every element of A by its cofactor

(2) Transpose the output from step 1.

(3) Divide the output from step 2 by |A|

⇒ A−1 =





0.25862068965517 −0.29310344827586 −0.17241379310345
0.20689655172414 −0.03448275862069 −0.13793103448276
0.13793103448276 0.31034482758621 0.24137931034483





C−1 =





0.37053571428571 0.09821428571429 −0.03125000000000
−0.11607142857143 0.05357142857143 −0.06250000000000
−0.34375000000000 −0.18750000000000 −0.03125000000000





(AC)−1 = C−1A−1 =





0.11183805418719 −0.12169027093596 −0.08497536945813
−0.02755541871921 0.01277709359606 −0.00246305418719
−0.13200431034483 0.09752155172414 0.07758620689655





Problem 2 (Graphical Convolution.)
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Figure 1: Problem 2(c)

(c) We will be encountering box and triangle functions very often in this class; so we might as well give
them special names. So let us define:

Π(t) = u(t −
1

2
) − u(t +

1

2
)

Λ(t) = Π(t) ∗ Π(t)

Π(t) is basically a box centered around t = 0 and has a base and height of 1 . Λ(t) is a triangle centered
around t = 0 and has a base of 2 and height of 1 . You will encounter this notation in many text books.

In this problem we are given y(t), x(t) and are asked to find h(t) such that y(t) = x(t) ∗ h(t) . The first
thing to notice is that x(t) = Π(t − 3

2 ) . Second, from our experience in doing graphical convolutions
with box functions, we know that h(t) has to be a rectangle of the form aΠ( t−t0

b ) . Therefore, we need
to determine its length b and height a and the center point on the t-axis t0 . We also know that the
length of the interval in which y(t) > 0 cannot exceed the sum of the two intervals in which x(t) and
h(t) are nonzero respectively. Therefore, b = 8− 1 = 7 . The maximum value of y(t) (happens to be 3 )
is the area of the box x(t) (happens to be 1 ) scaled by a . Therefore, a = 3 . Also, notice that y(t) is
centered around t = 0 , while x(t) is delayed by τ = 3

2 . Therefore, in order to compensate of the delay
of x(t) , h(t) has to be delayed by t0 = −3/2 .

⇒ h(t) = 3Π(
t + 3

2

7
)

We can also approach this problem graphically, by going back to the definition of convolution y(t) =
x(t) ∗ h(t) =

∫ ∞

−∞
h(τ)x(t − τ)dτ . We first flip one of the signals (x(t) in this case, since we are trying

to determine h)(t) ). Figure 3 shows a flipped version of x(t) . How do we position h(t) in order to
maximize the value of the convolution at t = 0? we need complete overlap between x(−τ) and h(τ) .
Since y(t) is symmetric around the axis, we know that if we drag x(−τ) in either direction along the
axis by the same amount, we should get the same result. Therefore, h(τ) has to be symmetric around
the axis of x(−τ) , which is why we get the above result.

(d) Let z(t) = Π(t) ∗ Λ(t) . Clearly, z(t) has its maximum value at t = 0 . This maximum vaue is the
area of overlap (the sum of the two trapezoids). Therefore, zmax = 0.75 .
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Figure 2: Problem 2(d)

y(t) = x(t) ∗ h(t) = Π(t −
3

2
) ∗ Λ(t + 1) = Π(t) ∗ δ(t −

3

2
) ∗ Λ(t) ∗ δ(t + 1)

⇒ y(t) = Π(t) ∗ Λ(t) ∗ δ(t −
3

2
) ∗ δ(t + 1) = z(t) ∗ δ(t −

1

2
)

Therefore, as we can see y(t) is just a delayed version of z(t) . Therefore, ymax = zmax = 0.75, y(1
2 ) =

z(0) .

Once again we can also look at this problem graphically. Going back to the definition of convolution
y(t) = x(t) ∗ h(t) =

∫

∞

−∞
h(τ)x(t − τ)dτ . In order to perform this convolution graphically, we first flip

one of the signals (doesn’t matter which one) along the t-axis. Figure 3 shows a flipped version of x(t) .
The next step is the drag step. How far do we have to drag x(−τ) before its center completely overlaps
with the center of h(τ) ? when they overlap, what is the area?

Problem 3 (Convolution.)

• 2.21(a)

x[n] = αnu[n]

h[n] = βnu[n]

α 6= β

7



Figure 3: x(−t) the time reversed (flipped) version of x(t) in problems 2cd

y[n] = (x ⋆ h)[n]

=

∞
∑

k=−∞

x[k]h[n − k]

=

∞
∑

k=−∞

αku[k]βn−ku[n − k]

=

∞
∑

k=0

αkβn−ku[n − k]

= βn ·
∞
∑

k=0

(
α

β
)ku[n − k]

= βnu[n] ·

n
∑

k=0

(
α

β
)k

= βnu[n]
1 − (α

β )n+1

1 − (α
β )

=
βn+1 − αn+1

β − α
u[n]

• 2.21(d)

8



9



• 2.22(a)

x(t) = e−αtu(t)

h(t) = e−βtu(t)

y(t) =

∫ ∞

−∞

x(τ)h(t − τ)dτ

=

∫

∞

−∞

e−ατu(τ)e−β(t−τ)u(t − τ)dτ

=

{
∫ t

0 e−ατe−β(t−τ)dτ t ≥ 0
0 t < 0

If α 6= β , then:

y(t) = e−βt

∫ t

0

e−(α−β)τdτ u(t)

= e−βt e
−(α−β)t − 1

β − α
u(t)

If α = β , then:

y(t) = e−βt

∫ t

0

1dτ u(t)

= te−βtu(t)

See plot below.

• 2.22(e)

First, we observe that h(t) can be written as:

h(t) =

{

1 − t 0 ≤ t ≤ 1
0 else

Because x(t) is periodic, y(t) will also be periodic. We will compute y(t) for one period.

For − 1
2 < t < 1

2 , we have

y(t) = x(t) ⋆ h(t)

=

∫

∞

−∞

h(τ)x(t − τ)dτ

=

∫ t+1/2

0

(1 − τ)dτ +

∫ 1

t+1/2

(−1)(1 − τ)dτ

= [τ −
1

2
τ2]

t+1/2
τ=0 + [

1

2
τ2 − τ ]1τ=t+1/2

= ((t +
1

2
) −

1

2
(t +

1

2
)2) + (

1

2
− 1) − (

1

2
(t +

1

2
)2 − (t +

1

2
))

=
1

4
+ t − t2
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For 1
2 < t < 3

2 , we have

y(t) =

∫ t−1/2

0

(−1)(1 − τ)dτ +

∫ 1

t−1/2

(1 − τ)dτ

= [
1

2
τ2 − τ ]

t−1/2
τ=0 + [τ −

1

2
τ2]1τ=t−1/2

= (
1

2
(t −

1

2
)2) + (1 −

1

2
) − ((t −

1

2
) −

1

2
(t −

1

2
)2)

= t2 − 3t +
7

4

y(t) will have a period of 2.

The plots of the solutions to problems 2.22(a) and (e) are shown in the following figure.
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2.22(a) with alpha = 2, beta = 5
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0

0.5

2.22(e)

Problem 4 (Impulse response and system properties.)

• 2.28(b)

Not causal, because h[−1] = 1.25 6= 0

Stable, because
∑∞

n=−∞
|h[n]| =

∑∞

n=−2(0.8)n = 1.5625
1−0.8 = 7.81215 < ∞
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• 2.28(g)

Causal, because h[n] = 0 for all n < 0

Stable, because
∑

∞

n=−∞
|h[n]| =

∑

∞

n=1 n(1
3 )n = 0.75 < ∞

• 2.29(d)

Not causal, because h(−2) = e−4 6= 0

Stable, because
∫ ∞

−∞
|h(t)|dt =

∫ −1

−∞
e2tdt = 1

2e−2t < ∞

• 2.29(g)

Causal, because h(t) = 0 for all t < 0

Unstable, because
∫

∞

−∞
|h(t)|dt = ∞

(Observe that −e(t−100)/100 approaches −∞ as t goes to ∞ )

Problem 5 (Noise suppression system for airplanes.)

• (a)

Assume that the two delay elements both store the value 0 at the beginning of time.

Linearity First, assume that an input signal x1[n] produces an output signal

y1[n] =
2

3
x1[n] +

1

3
x1[n − 1] +

1

3
x1[n − 2]

Similarly, assume that an input signa; x2[n] produces an output signal

y2[n] =
2

3
x2[n] +

1

3
x2[n − 1] +

1

3
x2[n − 2]

If we use the signal x[n] = αx1[n] as the input to the system, the output will be

y[n] =
2

3
αx1[n] +

1

3
αx1[n − 1] +

1

3
αx1[n − 2] = αy1[n]

If we use the signal x[n] = x1[n] + x2[n] as the input to the system, the output will be

y1[n] =
2

3
(x1[n] + x2[n]) +

1

3
(x1[n − 1] + x2[n − 1]) +

1

3
(x1[n − 2] + x2[n − 2]) = y1[n] + y2[n]

Therefore, the system is linear.

Time-invariance Again assume that an input signal x1[n] produces an output signal

y1[n] =
2

3
x1[n] +

1

3
x1[n − 1] +

1

3
x1[n − 2]

If we use the signal x[n] = x1[n − n0] as the input to the system, the output will be

y[n] =
2

3
x1[n − n0] +

1

3
x1[n − n0 − 1] +

1

3
x1[n − n0 − 2] = y1[n − n0]

Therefore, the system is time-invariant.

Impulse response We can see from the figure that the impulse response of the system is

h[n] =
2

3
δ[n] +

1

3
δ[n − 1] +

1

3
δ[n − 2]

12



• (b)

Causality Yes, the system is causal, because the current output y[n] depends only on current and past
inputs.

Memorylessness No, the system is not memoryless, because y[n] depends on x[n − 1] and x[n − 2] .

Stability Yes, the system is stable, because

∞
∑

n=−∞

|h[n]| =
4

3
< ∞

Stability is important because we want all bounded input signals to produce bounded outputs.
Unbounded outputs can cause buffer overflows which usually return incorrect results.

• (c)

The following figures show the input and output signals for the three cases. We see that the system
significantly attenuates the noise. When the input to the system is the combined signal, the output
is much less noisy than the input. The following Matlab script was used to generate the figures.

h = [2/3 1/3 1/3];

index = 1:1:240;

noise input = cos(3*pi/4*index) + 0.5*cos(2*pi/3*index);

speech input = cos(pi/40*index);

total input = cos(3*pi/4*index) + 0.5*cos(2*pi/3*index)+cos(pi/40*index);

noise output = conv(noise input,h);

speech output = conv(speech input,h);

total output = conv(total input,h);

subplot(3,1,1),plot(index,speech input,’--r’,index,speech output(1:240),’-b’)

axis([1 240 -2 2])

title(’Speech Input Signal (Input: dashed line, Output: solid line)’)

subplot(3,1,2),plot(index(1:60),noise input(1:60),’--r’,index(1:60),noise output(1:60),’-b’)

title(’Noise Input Signal (Input: dashed line, Output: solid line)’)

subplot(3,1,3),plot(index,total input,’--r’,index,total output(1:240),’-b’)

axis([1 240 -2.5 2.5])

title(’Speech+Noise Input Signal (Input: dashed line, Output: solid line)’)
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• (d)

We can use Matlab to compute the SNR. At the input, the SNR is 0.8000 . At the output, the SNR
is 7.7331 . We see that the filter has increased the SNR dramatically.

signal input power = (sum(speech input.^2))/240;

noise input power = (sum(noise input.^2))/240;

snr input = signal input power/noise input power;

signal output power = (sum((speech output(1:240)).^2))/240;

noise output power = (sum((noise output(1:240)).^2))/240;

snr output = signal output power/noise output power;

Problem 6 (Matlab, vector bases)

• (a)

‖−→v i‖ =
√−→v T

i
−→v i =

√

−→v i ·
−→v i

θij = arccos((−→v i ·
−→v j)/(‖−→v i‖‖

−→v j‖))

Using the Matlab script shown below, we compute that:

−→v i ·
−→v j =

{

1, i = j
0, i 6= j

We find that the norm of each of the four vectors is equal to 1.0000 , and that the angle between
each pair of unique vectors is π

2 . These four vectors form an orthonormal basis set.
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load(’basis.mat’);

dot(v1,v1)

dot(v2,v2)

dot(v3,v3)

dot(v4,v4)

dot(v1,v2)

dot(v1,v3)

dot(v1,v4)

dot(v2,v3)

dot(v2,v4)

dot(v3,v4)

acos(dot(v1,v2))

acos(dot(v1,v3))

acos(dot(v1,v4))

acos(dot(v2,v3))

acos(dot(v2,v4))

acos(dot(v3,v4))

• (b)

−→y T−→v 1 = α1
−→v1

T−→v 1 + α2
−→v2

T−→v 1 + α3
−→v3

T−→v 1 + α4
−→v4

T−→v 1

= α1 ∗ 1 + 0 + 0 + 0

= α1

−→y T−→v 2 = α2

−→y T−→v 3 = α3

−→y T−→v 4 = α4

• (c)

x1 alpha1 = dot(x1,v1);

x1 alpha2 = dot(x1,v2);

x1 alpha3 = dot(x1,v3);

x1 alpha4 = dot(x1,v4);

x2 alpha1 = dot(x2,v1);

x2 alpha2 = dot(x2,v2);

x2 alpha3 = dot(x2,v3);

x2 alpha4 = dot(x2,v4);

x3 alpha1 = dot(x3,v1);

x3 alpha2 = dot(x3,v2);

x3 alpha3 = dot(x3,v3);

x3 alpha4 = dot(x3,v4);

−→x 1 = 5.2630−→v 1 + 0.0367−→v 2 + 1.3194−→v 3 − 4.6446−→v 4

−→x 2 = 1.5750−→v 1 − 1.9564−→v 2 + 3.9976−→v 3 + 4.2687−→v 4

−→x 3 = 0.2789−→v 1 + 1.2448−→v 2 − 1.7953−→v 3 − 3.7327−→v 4

Problem 7 (Complex Numbers)
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(a) Remember that every complex number c can be represented in one of two forms: c = a + jb
(Cartesian/Rectangular) or c = rejθ (Polar), where a, b, r, θ ∈ R and r > 0 . a = ℜe{c} and b = ℑm{c}
are called the real and imaginary parts of c respectively, while r = |c| and θ = ∠c are called the
magnitude and the angle (phase) of c respectively. The rectangular representation is usually more
convenient for addition/subtraction, while the polar representation is more useful in representing products
and powers and ratios. We have the following relationships between a, b, r, θ :

r =
√

a2 + b2, θ = arctan(
b

a
), a = r cos θ, b = r sin θ

Now using these relationships, we can find the cartesian and polar representations of c1 = 1+j
1−j . For the

rectangular form, we multiply the numerator and denominator of c1 by the complex conjugate of the
denominator (to get the complex conjugate of a number we simply flip the sign of the imaginary part
and the angle).

c1 = j = ej π

2

(b) The polar representation is more convenient for finding roots. The N th root of a complex number

c = rejθ can be found by simply raising c to the 1
N power: c

1
N = r

1
N ej θ

N . Notice however, c =

rejθ = rej(θ+2π) = rej(θ+2nπ) for all n ∈ Z . Therefore, r
1
N ej (θ+2nπ)

N is an N th root for all n ∈ Z .
Does that mean that there is an infinite number of N th roots? Not quite. If you look closely at the
expression, you will notice that it repeats every N integers. Therefore, there are only N unique roots
(also remember that every polynomial of order N has exactly N complex roots). So we only need to
consider 0 6 n < N .

Now back to our example, c2 = −16 = 16ejπ . The four fourth roots of c2 are 2ej π

4 , 2ej 3π

4 , 2ej 5π

4 , 2ej 7π

4 .

Problem 8 (Differential Equations)

(i)

Let i(t) be the current flowing out of the positive terminal of the signal source x(t) . Let vR(t), vL(t), vC(t)
be the voltages across the resistor, inductor, and capacitor respectively (in the direction of the current
flow). We have the following relations (using KVL, Ohm’s law ...):

vR(t) + vL(t) + vc(t) = x(t)

vR(t) = i(t)R, vL(t) = L
di(t)

dt
, i(t) = C

dvC(t)

dt
, vC(t) = y(t)

⇒ vR(t) = RC
dy(t)

dt
, vL(t) = LC

d2y(t)

dt2

y(t) + RC
dy(t)

dt
+ LC

d2y(t)

dt2
= x(t)

(ii)

In order to find the homogeneous solution yh(t) , we set the input to x(t) = 0 and plug yh(t) = Aert

into the differential equation to get the following characteristic polynomial:

Lr2 + Rr +
1

C
= 0

solving for the roots of the polynomial we get:

r = −
R

2L
±

√

R2 − 4 L
C

2L
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Plugging in R = 2Ω, L = 1H, C = 0.2F , we find that the two roots are r1 = −1 + j2, r2 = −1 − j2 .

⇒ yh(t) = K1e
r1t + K2e

r2t = e−t(K1e
j2t + K2e

−j2t)

(iii)

Since all the voltages and currents are real, we only need the real part of yh(t) :

ℜe{yh(t)} = e−t(ℜe{K1e
j2t} + ℜe{K2e

−j2t})

= e−t(ℜe{K1} cos 2t −ℑm{K1} sin 2t + ℜe{K2} cos 2t + ℑm{K2} sin 2t)

= e−t(α1 cos 2t + α2 sin 2t)

where α1, α2 are arbitrary real constants that are determined from the initial conditions. Also, remember
that α1 cos 2t + α2 sin 2t can also be written as α cos(2t + φ) , where both α, φ are real constants.
Therefore,

ℜe{yh(t)} = αe−t cos(2t + φ)

Problem 9 (Difference Equations)

(a)

Let us use year 2001 as our referrence year (i.e. n = 0).

y[n] = 1.06y[n− 1] + x[n]

x[n] = 1500u[n]

y[n] = 0 ∀n < 0

x[n] is the input to the system (a scaled step function). y[n] is the ouput (account balance). In order
to find the impulse response h[n] , we solve the difference equation when the input is δ[n] .

h[n] = 1.06h[n− 1] + δ[n]

⇒ h[0] = 1.06h[−1] + δ[0] = 1

h[1] = 1.06h[0] + δ[1] = 1.06

h[2] = 1.06h[1] + δ[2] = 1.062

h[3] = 1.06h[2] = 1.063

⇒ h[n] = 1.06n∀n ≥ 0

⇒ h[n] = 1.06nu[n]

As we can see from the impulse response, the system is causal, but NOT stable or memoryless. Although
not required, we can compute the output:

y[n] = x[n] ∗ h[n] = 1500
n

∑

k=−∞

h[k] = 1500u[n]
n

∑

k=0

1.06k

y[n] = 1500u[n]
1− 1.06n+1

1 − 1.06
= 25000(1.06n+1 − 1)u[n]

(b)
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y[n] = (
1

3
− j

1

4
)y[n − 1] + j2x[n]

⇒ yR[n] + jyI [n] = (
1

3
− j

1

4
)(yR[n − 1] + jyI [n − 1]) + j2(xR[n] + jxI [n])

⇒ yR[n] + jyI [n] =
1

3
yR[n − 1] + j

1

3
yI [n − 1] − j

1

4
yR[n − 1] +

1

4
yI [n − 1] + j2xR[n] − 2xI [n]

⇒ yR[n] + jyI [n] = (
1

3
yR[n − 1] +

1

4
yI [n − 1] − 2xI [n]) + j(

1

3
yI [n − 1] −

1

4
yR[n − 1] + 2xR[n])

⇒ yR[n] =
1

3
yR[n − 1] +

1

4
yI [n − 1] − 2xI [n]

yI [n] =
1

3
yI [n − 1] −

1

4
yR[n − 1] + 2xR[n]

The block diagram is shown in Figure 4.

Figure 4: Block diagram
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