Homework 3 Solutions

(Send your grades to ee120staff@gmail.com. Check the course website for details)
Problem 1 (Noise suppression system for airplanes, continued.)
(a) From Homework 2, the impulse response of the noise suppression filter is $g[n]=\frac{2}{3} \delta[n]+\frac{1}{3} \delta[n-1]+$ $\frac{1}{3} \delta[n-2]$. Thus the frequency response is:

$$
G\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} g[n] e^{-j \omega n}=\frac{2}{3}+\frac{1}{3} e^{-j \omega}+\frac{1}{3} e^{-j 2 \omega}
$$

(b) See Figure 1.

Figure 1: Problem 1b.

Problem 2 (Frequency responses.)
The output of an LTI system when the input is a linear combination of complex exponentials has a simple form:

$$
e^{j \omega t} * h(t)=H(j \omega) e^{j \omega}, \quad H(j \omega)=\int_{-\infty}^{\infty} h(t) e^{-j \omega t} d t
$$

(a) $H(j \omega)=\frac{1}{j \omega}, x(t)=2 e^{j 2 t}-\cos (-\pi t)=2 e^{j 2 t}-\frac{e^{j \pi t}}{2}-\frac{e^{-j \pi t}}{2}$

$$
\begin{aligned}
\Rightarrow y(t) & =x(t) * y(t)=2 H(j 2) e^{j 2 t}-H(j \pi) \frac{e^{j \pi t}}{2}-H(-j \pi) \frac{e^{-j \pi t}}{2} \\
= & -j e^{j 2 t}-\frac{1}{j 2 \pi} e^{j \pi t}+\frac{1}{j 2 \pi} e^{-j \pi t}=-j e^{j 2 t}-\frac{1}{\pi} \sin (\pi t)
\end{aligned}
$$

(b) In order to take advantage of the Eigenfunction property, we need to write $x(t)$ as a linear combination of complex exponentials (Fourier Series expansion). $x(t)$ is periodic with fundamental period $T=10^{-4} s$.

$$
\begin{gathered}
\Rightarrow \omega_{0}=\frac{2 \pi}{T}=2 \pi * 10000 \approx 6.28 \times 10^{4} \\
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t} \\
a_{k}=\frac{1}{T} \int_{T} x(t) e^{-j k \omega_{0} t} d t=\frac{\omega_{0}}{\pi} \int_{0}^{T_{d}} e^{-j k \omega_{0} t} d t \\
=-\left.\frac{e^{-j k \omega_{0} t}}{j k \pi}\right|_{t=0} ^{t=T_{d}}
\end{gathered} \begin{aligned}
& a_{k}= \begin{cases}\frac{\omega_{0} T_{d}}{\pi}=\frac{1}{2} \\
\frac{1-e^{-j k \omega_{0} T_{d}}}{j k \pi}=\frac{1-e^{-j k \frac{\pi}{2}}}{j k \pi} & \text { if } k=0 \\
\text { otherwise }\end{cases}
\end{aligned}
$$

Notice that $a_{k}=a_{-k}^{*}$, which is what we expect because $x(t)$ is a real signal. Also, $H(j \omega)$ rejects all frequencies $\omega \geqslant 1.5 \times 10^{5} \mathrm{rad} / \mathrm{s}$. Therefore, all harmonics $|k|>2$ will be gone.

$$
H(j \omega)= \begin{cases}8\left(1-\frac{|\omega|}{150000}\right) & \text { if }|\omega| \leq 150000 \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{gathered}
y(t)=a_{-2} H\left(-j 2 \omega_{0}\right) e^{-j 2 \omega_{0} t}+a_{-1} H\left(-j \omega_{0}\right) e^{-j \omega_{0} t}+a_{0} H(j 0)+a_{1} H\left(j \omega_{0}\right) e^{j \omega_{0} t}+a_{2} H\left(j 2 \omega_{0}\right) e^{j 2 \omega_{0} t} \\
H(j 0)=8, H\left(-j \omega_{0}\right)=H\left(j \omega_{0}\right) \approx 4.649, H\left(-j 2 \omega_{0}\right)=H\left(j 2 \omega_{0}\right) \approx 1.298 \\
a_{0}=\frac{1}{2}, a_{1}=\frac{1}{\pi}(1-j)=\sqrt{2} e^{-j \frac{\pi}{4}}, a_{-1}=\frac{1}{\pi}(1+j)=\sqrt{2} e^{j \frac{\pi}{4}}, a_{2}=\frac{-j}{\pi}, a_{-2}=\frac{j}{\pi} \\
\Rightarrow y(t)=a_{0} H(j 0)+H\left(j \omega_{0}\right)\left(a_{1} e^{j \omega_{0} t}+a_{1}^{*} e^{-j \omega_{0} t}\right)+H\left(j 2 \omega_{0}\right)\left(a_{2} e^{2 j \omega_{0} t}+a_{2}^{*} e^{-j 2 \omega_{0} t}\right) \\
\Rightarrow y(t) \approx 4+\frac{13.15}{\pi} \cos \left(\omega_{0}-\frac{\pi}{4}\right)-\frac{2.59}{\pi} \sin \left(2 \omega_{0} t\right)
\end{gathered}
$$

(c) $h[n]=\left(\frac{1}{3}\right)^{n} u[n], x[n]=3 e^{j \frac{3 \pi}{4}(n-2)}-\sin \left(\frac{5 \pi}{4} n\right)$. First we need to find the frequency response $H\left(e^{j \omega}\right)$:

$$
\begin{gathered}
H\left(e^{j \omega}\right)=\sum_{k=-\infty}^{\infty} h[k] e^{-j k \omega}=\sum_{k=0}^{\infty}\left(\frac{1}{3}\right)^{k} e^{-j k \omega}=\sum_{k=0}^{\infty}\left(\frac{1}{3} e^{-j \omega}\right)^{k}=\frac{1}{1-\frac{1}{3} e^{-j \omega}} \\
x[n]=3 e^{-j \frac{3 \pi}{2}} e^{j \frac{3 \pi}{4} n}+\frac{j}{2} e^{j \frac{5 \pi}{4} n}-\frac{j}{2} e^{-j \frac{5 \pi}{4} n}=j\left(3 e^{j \frac{3 \pi}{4} n}+\frac{1}{2} e^{j \frac{5 \pi}{4} n}-\frac{1}{2} e^{-j \frac{5 \pi}{4} n}\right) \\
\Rightarrow y[n]=j\left(\left(\frac{3}{1-\frac{1}{3} e^{-j \frac{3 \pi}{4}}}\right) e^{j \frac{3 \pi}{4} n}+\left(\frac{\frac{1}{2}}{1-\frac{1}{3} e^{-j \frac{5 \pi}{4}}}\right) e^{j \frac{5 \pi}{4} n}-\left(\frac{\frac{1}{2}}{1-\frac{1}{3} e^{j \frac{5 \pi}{4}}}\right) e^{-j \frac{5 \pi}{4} n}\right)
\end{gathered}
$$

$$
=j\left(\left(\frac{3}{1+\frac{1}{3} e^{j \frac{\pi}{4}}}\right) e^{j \frac{3 \pi}{4} n}+\left(\frac{\frac{1}{2}}{1+\frac{1}{3} e^{-j \frac{\pi}{4}}}\right) e^{j \frac{5 \pi}{4} n}-\left(\frac{\frac{1}{2}}{1+\frac{1}{3} e^{j \frac{\pi}{4}}}\right) e^{-j \frac{5 \pi}{4} n}\right)
$$

Problem 3 (Continuous-time Fourier series.)
(a) $x(t)$ is periodic with period $T=3$ and fundamental frequency $\omega_{0}=\frac{2 \pi}{T}=\frac{2 \pi}{3}$, and over one period is defined as

$$
x(t)= \begin{cases}2, & 0<t \leq 1 \\ 1, & 1<t \leq 2 \\ 0, & 2<t \leq 3\end{cases}
$$

The Fourier series coefficients of $x(t)$ are

$$
a_{0}=\frac{1}{T} \int_{T} x(t) d t=\frac{1}{3} \int_{0}^{3} x(t) d t=1
$$

and for $k \neq 0$,

$$
\begin{aligned}
a_{k} & =\frac{1}{T} \int_{T} x(t) e^{-j k \omega_{0} t} d t \\
& =\frac{1}{3} \int_{0}^{1} 2 e^{-j k \frac{2 \pi}{3} t} d t+\frac{1}{3} \int_{1}^{2} e^{-j k \frac{2 \pi}{3} t} d t \\
& =\frac{1}{-j k \pi}\left(e^{-j k \frac{2 \pi}{3}}-1\right)+\frac{1}{-j k 2 \pi}\left(e^{-j k \frac{4 \pi}{3}}-e^{-j k \frac{2 \pi}{3}}\right) \\
& =\frac{1}{-j k 2 \pi}\left(\left(e^{-j k \frac{2 \pi}{3}}-1\right)+\left(e^{-j k \frac{4 \pi}{3}}-1\right)\right) \\
& =\frac{1}{-j k 2 \pi}\left(e^{-j k \frac{\pi}{3}}\left(e^{-j k \frac{\pi}{3}}-e^{j k \frac{\pi}{3}}\right)+e^{-j k \frac{2 \pi}{3}}\left(e^{-j k \frac{2 \pi}{3}}-e^{j k \frac{2 \pi}{3}}\right)\right) \\
& =\frac{e^{-j k \pi / 3} \sin (k \pi / 3)+e^{-j k 2 \pi / 3} \sin (k 2 \pi / 3)}{k \pi}
\end{aligned}
$$

Now $y(t)=x(3 t)$ is periodic with $T=1$ and $\omega_{0}=2 \pi$. By the time scaling property of the CTFS, $y(t)$ has FS coefficients $b_{k}=a_{k}$. Note however that $x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{-j k \frac{2 \pi}{3} t}$ and $y(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{-j k 2 \pi t}$ have different fundamental frequencies.
(b) $x(t)$ is periodic with $T=4$ and $\omega_{0}=\pi / 2$. Example 3.5 on page 193 of OWN shows that a periodic square wave defined over one period as

$$
y(t)= \begin{cases}\frac{1}{2}, & |t|<\frac{1}{4} \\ 0, & \frac{1}{4}<|t|<2\end{cases}
$$

has FS coefficients $b_{k}=\frac{\sin (k \pi / 8)}{2 k \pi}$. Since $a_{k}=(-1)^{k} \frac{\sin (k \pi / 8)}{2 k \pi}=b_{k} e^{j \pi k}$, by the time shifting property of the CTFS, $x(t)=y(t+2)$. Thus $x(t)$ is a period square wave defined over one period as

$$
x(t)= \begin{cases}\frac{1}{2}, & 7 / 4<t<9 / 4 \\ 0, & 0<t<7 / 4 \text { and } 9 / 4<t<4\end{cases}
$$

(c) Let $x(t)$ be a periodic signal with fundamental period T and FS coefficients a_{k}. By the time shifting property of the CTFS, the FS coefficients of $x\left(t-t_{0}\right)$ are $b_{k}=a_{k} e^{-j k \frac{2 \pi}{T} t_{0}}$. Similarly, the FS coefficients of $x\left(t+t_{0}\right)$ are $c_{k}=a_{k} e^{j k \frac{2 \pi}{T} t_{0}}$. Therefore, the FS coefficients of $x\left(t-t_{0}\right)+x\left(t+t_{0}\right)$ are

$$
d_{k}=b_{k}+c_{k}=\left(e^{-j k \frac{2 \pi}{T} t_{0}}+e^{j k \frac{2 \pi}{T} t_{0}}\right) a_{k}=2 \cos \left(k 2 \pi t_{0} / T\right) a_{k}
$$

Problem 4 (CTFS Properties.)
OWN 3.42
$x(t)$ is a real-valued signal with fundamental period T and Fourier Series Coefficients a_{k}. we need to show the following:
(a) $a_{k}=a_{-k}^{*}$ and a_{0} is real.

From the definition, $a_{0}=\frac{1}{T} \int_{T} x(t) d t$. Since $x(t)$ is real, the integral can only be real.

$$
\begin{gathered}
a_{k}=\frac{1}{T} \int_{T} x(t) e^{-j k \omega_{0} t} d t \text { taking the complex conjugate of both sides } \\
\Rightarrow a_{k}^{*}=\left\{\frac{1}{T} \int_{T} x(t) e^{-j k \omega_{0} t} d t\right\}^{*}=\frac{1}{T} \int_{T} x(t)^{*} e^{j k \omega_{0} t} d t \\
=\frac{1}{T} \int_{T} x(t) e^{j k \omega_{0} t} d t=a_{-k}
\end{gathered}
$$

This implies that $\Re e\left\{a_{k}\right\}=\Re e\left\{a_{-k}\right\}$ and $\Im m\left\{a_{k}\right\}=-\Im m\left\{a_{-k}\right\}$. The real part is even and the imaginary part is odd.
(b) $x(t)$ is even (i.e $x(t)=x(-t))$.

$$
\begin{gathered}
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega t} \\
x(-t)=\sum_{k=-\infty}^{\infty} a_{k} e^{-j k \omega t} \\
x(t)=x(-t) \Leftrightarrow \sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega t}=\sum_{k=-\infty}^{\infty} a_{k} e^{-j k \omega t} \\
\Rightarrow a_{k}=a_{-k}
\end{gathered}
$$

Therefore, $a_{k}=a_{-k}=a_{k}^{*}$. This is true only if $\Im m\left\{a_{k}\right\}=0$.
(c) $x(t)$ is odd (i.e $x(t)=-x(-t)$).

$$
\begin{gathered}
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega t} \\
x(-t)=\sum_{k=-\infty}^{\infty} a_{k} e^{-j k \omega t} \\
x(t)=-x(-t) \Leftrightarrow \sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega t}=\sum_{k=-\infty}^{\infty}-a_{k} e^{-j k \omega t} \\
\Rightarrow a_{k}=-a_{-k}
\end{gathered}
$$

Therefore, $a_{k}=-a_{-k}=-a_{k}^{*}$. This is true only if $\Re e\left\{a_{k}\right\}=0$. Since a_{0} cannot be imaginary, it must be 0 .
(d) We know that we can write the even part of $x(t)$ as $\frac{x(t)+x(-t)}{2}$.

$$
\Rightarrow \frac{x(t)+x(-t)}{2}=\frac{1}{2}\left(\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega t}+\sum_{k=-\infty}^{\infty} a_{k} e^{-j k \omega t}\right)
$$

$$
\begin{aligned}
=\frac{1}{2}\left(\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega t}+\sum_{k=-\infty}^{\infty} a_{-k} e^{j k \omega t}\right) & =\frac{1}{2} \sum_{k=-\infty}^{\infty}\left(a_{k}+a_{-k}\right) e^{j k \omega t}=\sum_{k=-\infty}^{\infty} \frac{1}{2}\left(a_{k}+a_{k}^{*}\right) e^{j k \omega t} \\
= & \sum_{k=-\infty}^{\infty} \Re e\left\{a_{k}\right\} e^{j k \omega t}
\end{aligned}
$$

(e) We know that we can write the odd part of $x(t)$ as $\frac{x(t)-x(-t)}{2}$.

$$
\begin{gathered}
\Rightarrow \frac{x(t)-x(-t)}{2}=\frac{1}{2}\left(\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega t}-\sum_{k=-\infty}^{\infty} a_{k} e^{-j k \omega t}\right) \\
=\frac{1}{2}\left(\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega t}-\sum_{k=-\infty}^{\infty} a_{-k} e^{j k \omega t}\right)=\frac{1}{2} \sum_{k=-\infty}^{\infty}\left(a_{k}-a_{-k}\right) e^{j k \omega t}=\sum_{k=-\infty}^{\infty} \frac{1}{2}\left(a_{k}-a_{k}^{*}\right) e^{j k \omega t} \\
=\sum_{k=-\infty}^{\infty} j \Im m\left\{a_{k}\right\} e^{j k \omega t}
\end{gathered}
$$

Problem 5 (CTFS Properties.)

OWN 3.44
(a) From (1) and (2), $x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}, \quad \omega_{0}=\frac{2 \pi}{T}=\frac{\pi}{3}, \quad a_{-k}=a_{k}^{*}$
(b) From (3), $x(t)=a_{1} e^{j \omega_{0} t}+a_{1}^{*} e^{-j \omega_{0} t}+a_{2} e^{j 2 \omega_{0} t}+a_{2}^{*} e^{-j 2 \omega_{0} t}$.
(b) From (4):

$$
\begin{gathered}
x(t)=a_{1} e^{j \omega_{0} t}+a_{1}^{*} e^{-j \omega_{0} t}+a_{2} e^{j 2 \omega_{0} t}+a_{2}^{*} e^{-j 2 \omega_{0} t} \\
x(t-3)=-a_{1} e^{j \omega_{0} t}-a_{1}^{*} e^{-j \omega_{0} t}+a_{2} e^{j 2 \omega_{0} t}+a_{2}^{*} e^{-j 2 \omega_{0} t} \\
x(t-3)=-x(t) \Leftrightarrow a_{2}=a_{2}^{*}=0 \\
\Rightarrow x(t)=a_{1} e^{j \omega_{0} t}+a_{1}^{*} e^{-j \omega_{0} t}
\end{gathered}
$$

(c) $|x(t)|^{2}=x(t) x^{*}(t)=\left(a_{1} e^{j \omega_{0} t}+a_{1}^{*} e^{-j \omega_{0} t}\right)\left(a_{1}^{*} e^{-j \omega_{0} t}+a_{1} e^{j \omega_{0} t}\right)=2\left|a_{1}\right|^{2}+a_{1}^{2} e^{j 2 \omega_{0} t}+a_{1}^{*^{2}} e^{-j 2 \omega_{0} t}$. When we integrate over a period, the last two terms will disappear.

$$
\begin{aligned}
\frac{1}{T} \int_{T}|x(t)|^{2} d t= & \frac{1}{6} \int_{-3}^{3} 2\left|a_{1}\right|^{2} d t=2\left|a_{1}\right|^{2}=\frac{1}{2} \\
& \Rightarrow\left|a_{1}\right|=\frac{1}{2}
\end{aligned}
$$

Therefore, from (5) and (6), $a_{1}=a_{1}^{*}=\frac{1}{2}$.

$$
\begin{gathered}
\Rightarrow x(t)=\frac{1}{2}\left(e^{j \frac{\pi}{3} t}+e^{-j \frac{\pi}{3} t}\right)=\cos \left(\frac{\pi}{3} t\right) \\
\Rightarrow A=1, \quad B=\frac{\pi}{3}, \quad C=0
\end{gathered}
$$

Problem 6 (CTFS Properties.)
(a) $y_{1}(t)=x\left(t-\frac{T}{2}\right)$ has Fourier series coefficients b_{k}. From the time-shifting property, we know that $b_{k}=a_{k} e^{-j k \omega_{0} \frac{T}{2}}=a_{k} e^{-j k \pi}=a_{k}(-1)^{k}$.
$y_{2}(t)=O d\{y(t)\}=\frac{y(t)-y(-t)}{2}$ has Fourier series coefficients c_{k}. From the properties of Fourier series, we know that $c_{k}=j \Im m\left\{b_{k}\right\}=j(-1)^{k} \Im m\left\{a_{k}\right\}$. However, this property only holds when the signal is real. The question did not specify $x(t)$ to be real. If we assume that $x(t)$ is complex, we can still use the Time Reversal property.

$$
y_{2}(t)=O d\{y(t)\}=\frac{y(t)-y(-t)}{2} \Leftrightarrow c_{k}=\frac{b_{k}-b_{-k}}{2}=\frac{a_{k}(-1)^{k}-a_{-k}(-1)^{-k}}{2}=\frac{1}{2}(-1)^{k}\left(a_{k}-a_{-k}\right)
$$

Notice that when $x(t)$ is real, $a_{k}^{*}=a_{-k}$, which leads to $a_{k}-a_{-k}=a_{k}-a_{k}^{*}=2 j \Im m\left\{a_{k}\right\}$.
(b) $y_{3}(t)=x\left(\frac{T}{4}-t\right)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \frac{2 \pi}{T}\left(\frac{T}{4}-t\right)}$

$$
\begin{gathered}
\Rightarrow y_{3}(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \frac{\pi}{2}} e^{-j k \frac{2 \pi t}{T}} \\
=\sum_{k=-\infty}^{\infty} a_{-k}(j)^{-k} e^{j k \frac{2 \pi t}{T}}
\end{gathered}
$$

Therefore, $y_{3}(t)$ is periodic with fundamental period T and Fourier series coefficients $d_{k}=j^{-k} a_{-k}$.
Problem 7 (DTFS/Frequency responses.)
OWN 3.16
(a) $x_{1}[n]=(-1)^{n}=e^{j \pi n}$. The output $y_{1}[n]=\left(x_{1} * h\right)[n]=0$, since $H\left(e^{j \pi}\right)=0$.
(b) $x_{2}[n]=1+\sin \left(\frac{3 \pi}{8} n+\frac{\pi}{4}\right)$. The DC component $e^{0 n}$ disappears while the remaining part $\sin \left(\frac{3 \pi}{8} n+\frac{\pi}{4}\right)$ passes without any distortion. Therefore, $y_{2}[n]=\left(x_{2} * h\right)[n]=\sin \left(\frac{3 \pi}{8} n+\frac{\pi}{4}\right)$.
(c) $x_{3}[n]=\sum_{k=-\infty}^{\infty}\left(\frac{1}{2}\right)^{n-4 k} u[n-4 k]$

$$
\begin{gathered}
x_{3}[n-4]=\sum_{k=-\infty}^{\infty}\left(\frac{1}{2}\right)^{n-4-4 k} u[n-4-4 k] \\
=\sum_{k=-\infty}^{\infty}\left(\frac{1}{2}\right)^{n-4(k+1)} u[n-4(k+1)] \quad \text { (replace } k \text { by } m=k+1 \text {) } \\
=\sum_{m=-\infty}^{\infty}\left(\frac{1}{2}\right)^{n-4 m} u[n-4 m]=x_{3}[n]
\end{gathered}
$$

Therefore, $x_{3}[n]$ is periodic with period $N=4$.

$$
x_{3}[n]=\sum_{k=0}^{3} a_{k} e^{j k n \frac{\pi}{2}}=a_{0}+a_{1} e^{j \frac{n \pi}{2}}+a_{2} e^{j n \pi}+a_{3} e^{j n \frac{3 \pi}{2}}
$$

However, notice that $H\left(e^{j 0}\right)=0, \quad H\left(e^{j \frac{\pi}{2}}\right)=0, \quad H\left(e^{j \pi}\right)=0, \quad H\left(e^{j \frac{3 \pi}{2}}\right)=0$. Therefore, $y_{3}[n]=$ $\left(x_{3} * h\right)[n]=0$ (we don't need to compute the Fourier series coefficients).

Problem 8 (Discrete-time Fourier series.)
(a)
(a) $x[n]$ is periodic with $N=7$ and $\omega_{0}=2 \pi / 7$. The Fourier series coefficients of $x[n]$ are specified over one period $(0 \leq k \leq 6)$ as $a_{0}=\frac{5}{7}$ and

$$
\begin{aligned}
a_{k} & =\frac{1}{N} \sum_{n=\langle N\rangle} x[n] e^{-j k \omega n} \\
& =\frac{1}{7} \sum_{n=0}^{4} e^{-j k \omega_{0} n} \\
& =\frac{1}{7} \frac{1-e^{-j k \omega_{0} 5}}{1-e^{-j k \omega_{0}}} \\
& =\frac{1}{7} \frac{e^{-j k \omega_{0} \frac{5}{2}}}{e^{-j k \omega_{0} \frac{1}{2}}} \frac{\left(e^{j k \omega_{0} \frac{5}{2}}-e^{-j k \omega_{0} \frac{5}{2}}\right)}{\left(e^{j k \omega_{0} \frac{1}{2}}-e^{-j k \omega_{0} \frac{1}{2}}\right)} \\
& =\frac{1}{7} e^{-j \frac{4 \pi}{7} k} \frac{\sin \left(\frac{5 \pi}{7} k\right)}{\sin \left(\frac{\pi}{7} k\right)}
\end{aligned}
$$

(b) $x[n]$ is periodic with $N=6$ and $\omega_{0}=\pi / 3$. The DTFS coefficients of $x[n]$ are specified over one period $(0 \leq k \leq 5)$ as $a_{0}=\frac{4}{6}$ and

$$
\begin{aligned}
a_{k} & =\frac{1}{6} \sum_{n=0}^{3} e^{-j k \omega_{0} n} \\
& =\frac{1}{6} \frac{1-e^{-j k \omega_{0} 4}}{1-e^{-j k \omega_{0}}} \\
& =\frac{1}{6} \frac{e^{-j k \omega_{0} \frac{4}{2}}}{e^{-j k \omega_{0} \frac{1}{2}}} \frac{\left(e^{j k \omega_{0} \frac{4}{2}}-e^{-j k \omega_{0} \frac{4}{2}}\right)}{\left(e^{j k \omega_{0} \frac{1}{2}}-e^{-j k \omega_{0} \frac{1}{2}}\right)} \\
& =\frac{1}{6} e^{-j \frac{\pi}{2} k} \frac{\sin \left(\frac{2 \pi}{3} k\right)}{\sin \left(\frac{\pi}{6} k\right)}
\end{aligned}
$$

(b)
(a) $x[n]$ is periodic with $N=8$ and $\omega_{0}=\frac{\pi}{4}$, and has DTFS coefficients

$$
\begin{aligned}
a_{k} & =\cos \left(\frac{k \pi}{4}\right)+\sin \left(\frac{k 3 \pi}{4}\right) \\
& =\frac{1}{2}\left(e^{j k \frac{\pi}{4}}+e^{-j k \frac{\pi}{4}}\right)+\frac{1}{2 j}\left(e^{j k \frac{3 \pi}{4}}-e^{-j k \frac{3 \pi}{4}}\right) .
\end{aligned}
$$

Now, looking at the synthesis equation for the DTFS, $a_{k}=\frac{1}{8} \sum_{n=\langle 8\rangle} x[n] e^{-j k \frac{\pi}{4} n}$, we see that $x[1]=x[-1]=4, x[3]=4 j$, and $x[-3]=-4 j$. Thus we can express one period $(0 \leq n \leq 7)$ of $x[n]$ as

$$
x[n]=4 \delta[n-1]+4 j \delta[n-3]-4 j \delta[n-5]+4 \delta[n-7] .
$$

(b) $x[n]$ is periodic with $N=8, \omega_{0}=\frac{\pi}{4}$, and DTFS coefficients $a_{k}=\sin \left(\frac{k \pi}{3}\right)=\frac{1}{2 j}\left(e^{j k \frac{\pi}{3}}-e^{-j k \frac{\pi}{3}}\right)$ for $0 \leq k \leq 6$, and $a_{7}=0$.

$$
\begin{aligned}
x[n] & =\sum_{k=\langle N\rangle} a_{k} e^{j k \omega_{0} n} \\
& =\frac{1}{2 j} \sum_{k=0}^{6}\left(e^{j k \frac{\pi}{3}} e^{j k \frac{\pi}{4} n}-e^{-j k \frac{\pi}{3}} e^{j k \frac{\pi}{4} n}\right) \\
& =\frac{1}{2 j} \sum_{k=0}^{6} e^{j k\left(\frac{\pi}{4} n+\frac{\pi}{3}\right)}-\frac{1}{2 j} \sum_{k=0}^{6} e^{j k\left(\frac{\pi}{4} n-\frac{\pi}{3}\right)} \\
& =\frac{1}{2 j} \frac{\left(1-e^{j 7 \alpha}\right)}{\left(1-e^{j \alpha}\right)}-\frac{1}{2 j} \frac{\left(1-e^{j 7 \beta}\right)}{\left(1-e^{j \beta}\right)} \\
& =\frac{1}{2 j} \frac{e^{j 7 \alpha / 2}}{e^{j \alpha / 2}} \frac{\left(e^{-j 7 \alpha / 2}-e^{j 7 \alpha / 2}\right)}{\left(e^{-j \alpha / 2}-e^{j \alpha / 2}\right)}-\frac{1}{2 j} \frac{e^{j 7 \beta / 2}}{e^{j \beta / 2}} \frac{\left(e^{-j 7 \beta / 2}-e^{j 7 \beta / 2}\right)}{\left(e^{-j \beta / 2}-e^{j \beta / 2}\right)} \\
& =\frac{1}{2 j}\left[-e^{j \frac{3 \pi}{4} n} \frac{\sin \left(\frac{7}{2}\left(\frac{\pi}{4} n+\frac{\pi}{3}\right)\right)}{\sin \left(\frac{1}{2}\left(\frac{\pi}{4} n+\frac{\pi}{3}\right)\right)}+e^{j \frac{3 \pi}{4} n} \frac{\sin \left(\frac{7}{2}\left(\frac{\pi}{4} n-\frac{\pi}{3}\right)\right)}{\sin \left(\frac{1}{2}\left(\frac{\pi}{4} n-\frac{\pi}{3}\right)\right)}\right]
\end{aligned}
$$

where we denoted $\alpha=\frac{\pi}{4} n+\frac{\pi}{3}$ and $\beta=\frac{\pi}{4} n-\frac{\pi}{3}$.

Problem 9 (Parseval's Relation.)
(a) First let's consider the periodic signal $x(t)=\sum_{n=-\infty}^{\infty} f(t-4 n)$ and derive its Fourier series coefficients a_{k}. We will then derive the Fourier series coefficients of $y(t)$ using the convolution property.
$x(t)$ is periodic with fundamental period $T=4$. Therefore, $\omega_{0}=\frac{2 \pi}{T}=\frac{\pi}{2}$.

$$
\begin{gathered}
\Rightarrow x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t} \\
\Rightarrow a_{k}=\frac{1}{T} \int_{T} f(t) e^{-j k \omega_{0} t} d t=\frac{-1}{4} \int_{\frac{-1}{2}}^{\frac{1}{2}} e^{-j k \omega_{0} t} d t \\
=\left.\frac{1}{4 j k \omega_{0}} e^{-j k \omega_{0} t}\right|_{-1 / 2} ^{1 / 2}=\frac{1}{4 j k \omega_{0}}\left(e^{-j k \frac{\omega_{0}}{2}}-e^{j k \frac{\omega_{0}}{2}}\right) \\
=\frac{-1}{2 k \omega_{0}}\left(\frac{1}{2 j}\left(e^{j k \frac{\omega_{0}}{2}}-e^{-j k \frac{\omega_{0}}{2}}\right)\right)=\frac{-\sin \left(k \frac{\omega_{0}}{2}\right)}{2 k \omega_{0}}=\frac{-\sin \left(k \frac{\pi}{4}\right)}{k \pi} \\
\Rightarrow a_{k}= \begin{cases}\frac{-1}{4} & \text { if } k=0 \\
\frac{-\sin \left(k \frac{\pi}{4}\right)}{k \pi} & \text { otherwise }\end{cases}
\end{gathered}
$$

Let b_{k} be the Fourier series coefficients of $y(t)$. Since $y(t)$ is periodic with fundamental period T, then we know from the convolution property that $b_{k}=T a_{k}^{2}$.

$$
\Rightarrow y(t)=\sum_{k=-\infty}^{\infty} b_{k} e^{j k \omega_{0} t}, \quad b_{k}= \begin{cases}\frac{1}{4} & \text { if } k=0 \\ \frac{4 \sin ^{2}\left(k \frac{\pi}{4}\right)}{(k \pi)^{2}} & \text { otherwise }\end{cases}
$$

The power of the signal $y(t)$ is defined as $\frac{1}{T} \int_{T}|y(t)|^{2} d t$. From Parseval's Relation, we know that $\frac{1}{T} \int_{T}|y(t)|^{2} d t=\sum_{k=-\infty}^{\infty}\left|b_{k}\right|^{2}$. Therefore, in order to approximate $y(t)$ as a finite linear sum of complex exponentials, we need to retain the coefficients that contain most of the power. We also know that the Fourier series coefficients b_{k} are real, positive and even and strictly decreasing as $|k|$ increases.

$$
\begin{gathered}
\Rightarrow \hat{y}(t)=\sum_{k=-M_{1}}^{M_{2}} b_{k} e^{j k \omega_{0} t} \\
P_{y}=\frac{1}{T} \int_{T}|y(t)|^{2} d t=\frac{1}{4} \int_{-1}^{1}|g(t)|^{2} d t \\
=\frac{1}{2} \int_{-1}^{0}(t+1)^{2} d t=\left.\frac{1}{2} \frac{(t+1)^{3}}{3}\right|_{t=-1} ^{t=0}=\frac{1}{6}
\end{gathered}
$$

Therefore, we need to choose M_{1} and M_{2} such that $\sum_{k=-M}^{M}\left|b_{k}\right|^{2} \geq \frac{9}{6}=0.15$.

$$
b_{0}^{2}=\frac{1}{16}=0.0625, \quad b_{1}^{2}=b_{-1}^{2}=\left(\frac{2}{\pi^{2}}\right)^{2} \approx 0.041, \quad b_{2}^{2}=b_{-2}^{2}=\left(\frac{4}{(2 \pi)^{2}}\right)^{2} \approx 0.1
$$

Notice that $b_{0}^{2}+b_{1}^{2}+b_{-1}^{2}+b_{2}^{2} \geq 0.15$. Also, this sum is minimum (i.e. if we remove any of the terms, the inequaltiy no longer holds).

$$
\hat{y}(t)=b_{0}+b_{1} e^{j \omega_{0} t}+b_{1} e^{-j \omega_{0} t}+b_{2} e^{j 2 \omega_{0} t}=b_{0}+2 b_{1} \cos \left(\omega_{0} t\right)+b_{2} e^{j 2 \omega_{0} t}
$$

(b) $z(t)=y(t) \cos (20 \pi t)$. Since $\cos (20 \pi t)=\frac{1}{2}\left(e^{j 40 \omega_{0} t}+e^{-j 40 \omega_{0} t}\right)$ is also periodic with $T=4$, then $z(t)$ also has a fundamental period $T=4$. Let the c_{k} be the Fourier series coefficients of $z(t)$. Also, let $z(t)=z_{1}(t)+z_{2}(t)$, where $z_{1}(t)=\frac{1}{2} e^{j 40 \omega_{0} t} y(t)$ and $z_{2}(t)=\frac{1}{2} e^{-j 40 \omega_{0} t} y(t)$. Let r_{k} and s_{k} be the Fourier series coefficients of $z_{1}(t)$ and $z_{2}(t)$ respectively.

$$
\begin{gathered}
r_{k}=\frac{1}{2} b_{k-40}, \quad s_{k}=\frac{1}{2} b_{k+40} \\
c_{k}=r_{k}+s_{k}
\end{gathered}
$$

Since the FS coefficients of $y(t)$ diminish very quickly, at least one term in this sum will be insignificant.

$$
\begin{gathered}
P_{z}=\frac{1}{T} \int_{T}|z(t)|^{2} d t=\frac{1}{T} \int_{T}|y(t)|^{2} \cos ^{2}(20 \pi t) d t \\
=\frac{1}{T} \int_{T}|y(t)|^{2}\left(\frac{1}{2}+\frac{1}{2} \cos (40 \pi t)\right) d t=\frac{P_{y}}{2}+\frac{1}{2 T} \int_{T}|y(t)|^{2} \cos (40 \pi t) d t \\
\frac{1}{2 T} \int_{T}|y(t)|^{2} \cos (40 \pi t) d t \approx 0 \\
P_{z}=\frac{P_{y}}{2}
\end{gathered}
$$

The approximation $\frac{1}{2 T} \int_{T}|y(t)|^{2} \cos (40 \pi t) d t \approx 0$ is valid since $\cos (40 \pi t)$ varies at a much higher rate than $y(t)$. Because we are scaling the shifted verions of b_{k} by a factor of $\frac{1}{2}$ in order to get r_{k} and s_{k}, we will need twice the terms we used in part (a). In other words $\widehat{z}(t)=\widehat{y}(t) \cos \left(40 \omega_{0} t\right)$.

Problem 10 (Fourier Series and Gibbs phenomenon - Matlab.)
(a)

$$
\begin{aligned}
c_{k} & =\int_{0}^{1} p(t) e^{-j 2 \pi k t} d t \\
& =\int_{0}^{1 / 2} e^{-j 2 \pi k t} d t-\int_{1 / 2}^{1} e^{-j 2 \pi k t} d t \\
& =\frac{1}{-j 2 \pi k}\left(e^{-j \pi k}-1-e^{-j 2 \pi k}+e^{-j \pi k}\right) \\
& =\frac{1-e^{-j \pi k}}{j \pi k} \\
& c_{0}=\int_{0}^{1} p(t) d t=0
\end{aligned}
$$

(b) The following Matlab code generates Figure 2.

```
function [] = gibbs();
[t10, p10, y10] = FS(10);
[t100, p100, y100] = FS(100);
[t1000, p1000, y1000] = FS(1000);
figure;
plot(t1000,y1000,'g-');
hold on;
stairs(t1000,p1000,'k--');
plot(t100,y100,'k-');
plot(t10,y10,'b-');
title('Fourier series convergence and Gibbs phenomenon');
xlabel('t');
ylabel('p_N(t)');
function [t, p, y] = FS(N)
k = (-N:N);
t = linspace(-. 5, . 5, 20*N+1);
p = ( }\textrm{t}>=0\mathrm{ );
p = 2.*p - 1;
c = (1 - exp(-j*pi.*k))./(j*pi.*k);
c(N+1) = 0; % c_k at k=0
y = zeros(size(t));
for i=1:length(c)
    y = y + c(i)*exp(j*2*pi*k(i).*t);
end
y = real(y);
```

The partial sum approximations at $t=0$ are $p_{N}(0)=0$, which does not agree with the value of the function $p(0)=1$.
(c) The maximum overshoot stays constant as the number of terms in the partial sum approximation increases, $\max \left|p(t)-p_{N}(t)\right| \approx 1.18$.

Figure 2: Problem 10b.
(d) As the number of terms in the partial sum approximation increases, the time-locations of the maximum overshoot gets closer and closer to the points of discontinuity at $t=0, \pm 0.5$.

Problem 11 (Orthogonality.)

(i) In order to find an orthormal basis, we follow the Gram-Schmidt algorithm. Since we have four vectors, we will have at most four basis vectors. Lets call them $\widehat{\beta}_{1}, \widehat{\beta}_{2}, \widehat{\beta}_{3}$, and $\widehat{\beta}_{4}$.

$$
\begin{gathered}
\widehat{\beta}_{1}=\frac{\overrightarrow{v_{1}}}{\left\|\overrightarrow{v_{1}}\right\|}=\frac{\overrightarrow{v_{1}}}{\sqrt{46}}=\left[\begin{array}{lllll}
0.1474 & 0.5898 & 0.2949 & 0 & 0.7372
\end{array}\right]^{\top} \\
\widehat{\beta}_{2}=\frac{\overrightarrow{v_{2}}-\left({\overrightarrow{v_{2}}}^{\top} \widehat{\beta}_{1}\right) \widehat{\beta}_{1}}{\left\|\overrightarrow{v_{2}}-\left({\overrightarrow{v_{2}}}^{\top} \widehat{\beta}_{1}\right) \widehat{\beta}_{1}\right\|}=\left[\begin{array}{lllll}
0.0130 & -0.6962 & -0.2733 & 0 & 0.6637
\end{array}\right]^{\top}
\end{gathered}
$$

$$
\begin{aligned}
& \widehat{\beta}_{3}=\frac{\overrightarrow{v_{3}}-\left(\vec{v}_{3}^{\top} \widehat{\beta}_{2}\right) \widehat{\beta}_{2}-\left(\vec{v}_{3}^{\top} \widehat{\beta}_{1}\right) \widehat{\beta}_{1}}{\left\|\overrightarrow{v_{3}}-\left(\overrightarrow{v_{3}} \top \widehat{\beta}_{2}\right) \widehat{\beta}_{2}-\left(\vec{v}_{3}^{\top} \widehat{\beta}_{1}\right) \widehat{\beta}_{1}\right\|}=\left[\begin{array}{llll}
0.0090 & 0.4009 & -0.9151 & 0
\end{array} \quad 0.0435\right]^{\top} \\
& \widehat{\beta}_{4}=\frac{\overrightarrow{v_{4}}-\left(\vec{v}_{4}^{\top} \widehat{\beta}_{3}\right) \widehat{\beta}_{3}-\left(\vec{v}_{4}^{\top} \widehat{\beta}_{2}\right) \widehat{\beta}_{2}-\left(\vec{v}_{4}^{\top} \widehat{\beta}_{1}\right) \widehat{\beta}_{1}}{\left\|\overrightarrow{v_{4}}-\left(\vec{v}_{4}^{\top} \widehat{\beta}_{3}\right) \widehat{\beta}_{3}-\left({\overrightarrow{v_{4}}}^{\top} \widehat{\beta}_{2}\right) \widehat{\beta}_{2}-\left({\overrightarrow{v_{4}}}^{\top} \widehat{\beta}_{1}\right) \widehat{\beta}_{1}\right\|}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0
\end{array}\right]^{\top}
\end{aligned}
$$

Therefore, we have only three basis vectors for \mathbf{S} (not surprising since $\overrightarrow{v_{4}}=\overrightarrow{v_{1}}+2 \overrightarrow{v_{2}}$).
(ii)

$$
\begin{gathered}
\overrightarrow{v_{1}}=w_{11} \widehat{\beta}_{1}+w_{12} \widehat{\beta}_{2}+w_{13} \widehat{\beta}_{3}=\left(\vec{v}_{1}^{\top} \widehat{\beta}_{1}\right) \widehat{\beta}_{1}+\left({\overrightarrow{v_{1}}}^{\top} \widehat{\beta}_{2}\right) \widehat{\beta}_{2}+\left(\vec{v}_{1}^{\top} \widehat{\beta}_{3}\right) \widehat{\beta}_{3}=\sqrt{46} \widehat{\beta}_{1} \\
\overrightarrow{v_{2}}=w_{21} \widehat{\beta}_{1}+w_{22} \widehat{\beta}_{2}+w_{23} \widehat{\beta}_{3}=\left(\vec{v}_{2}^{\top} \widehat{\beta}_{1}\right) \widehat{\beta}_{1}+\left({\overrightarrow{v_{2}}}^{\top} \widehat{\beta}_{2}\right) \widehat{\beta}_{2}+\left({\overrightarrow{v_{2}}}^{\top} \widehat{\beta}_{3}\right) \widehat{\beta}_{3}=6.1926 \widehat{\beta}_{1}+6.6822 \widehat{\beta}_{2} \\
\overrightarrow{v_{3}}=w_{31} \widehat{\beta}_{1}+w_{32} \widehat{\beta}_{2}+w_{33} \widehat{\beta}_{3}=\left(\vec{v}_{3}^{\top} \widehat{\beta}_{1}\right) \widehat{\beta}_{1}+\left(\vec{v}_{3}^{\top} \widehat{\beta}_{2}\right) \widehat{\beta}_{2}+\left(\vec{v}_{3}^{\top} \widehat{\beta}_{3}\right) \widehat{\beta}_{3}=12.0902 \widehat{\beta}_{1}+10.0461 \widehat{\beta}_{2}+9.6386 \widehat{\beta}_{3} \\
\overrightarrow{v_{4}}=w_{41} \widehat{\beta}_{1}+w_{42} \widehat{\beta}_{2}+w_{43} \widehat{\beta}_{3}=\left(\vec{v}_{4}^{\top} \widehat{\beta}_{1}\right) \widehat{\beta}_{1}+\left(\vec{v}_{4}^{\top} \widehat{\beta}_{2}\right) \widehat{\beta}_{2}+\left(\vec{v}_{4}^{\top} \widehat{\beta}_{3}\right) \widehat{\beta}_{3}=19.1675 \widehat{\beta}_{1}+13.3645 \widehat{\beta}_{2}
\end{gathered}
$$

Note: the answer to this problem is not unique. However, all answers must satisfy the following:

$$
\begin{gathered}
\widehat{\beta}_{i}^{\top} \widehat{\beta}_{j}=\delta[i-j] \quad i, j=1,2,3 \\
\overrightarrow{v_{i}}-w_{i 1} \widehat{\beta}_{1}+w_{i 2} \widehat{\beta}_{2}+w_{i 3} \widehat{\beta}_{3}=0 \quad i=1,2,3,4
\end{gathered}
$$

Also, if you are using matlab, you probably won't be getting the answers to be exactly what you expect due to finite precision.

Problem 12 (Projections.)

(i) All vectors in \mathbf{S}^{\perp} must be orthogonal to every vector in \mathbf{S} :

$$
\vec{x} \in \mathbf{S}^{\perp} \Leftrightarrow \vec{x}^{\top} \widehat{\beta}_{i}=0 \quad \forall_{i=1,2,3}
$$

Since \mathbf{S} has rank 3, then the rank of \mathbf{S}^{\perp} is $5-3=2$. Therefore, we need to find two basis vectors $\widehat{\alpha}_{1}$ and $\widehat{\alpha}_{2}$. If we take any random vector \vec{y} and project it onto \mathbf{S} to get \vec{y}, then we know that the error vector $\vec{y}-\overrightarrow{\hat{y}}$ will be orthogonal to \mathbf{S} (Orthogonality Principal). Since \mathbf{S} is a "very thin slice" of \mathbb{R}^{5}, any vector we choose at random will most likely NOT be in \mathbf{S}. Since we are going to do a projection anyway, let's choose $\vec{b}=\left[\begin{array}{lllll}1 & -1 & 4 & 7 & -7\end{array}\right]^{\top}$.

$$
\begin{aligned}
& \overrightarrow{\hat{b}}=\vec{b}-\left(\vec{b}^{\top} \widehat{\beta}_{3}\right) \widehat{\beta}_{3}-\left(\vec{b}^{\top} \widehat{\beta}_{2}\right) \widehat{\beta}_{2}-\left(\vec{b}^{\top} \widehat{\beta}_{1}\right) \widehat{\beta}_{1}=\left[\begin{array}{lllll}
-0.7568 & -0.8536 & 4.0569 & 0 & -6.7885
\end{array}\right]^{\top} \\
& \overrightarrow{b_{e}} \perp \mathbf{S}=\vec{b}-\overrightarrow{\hat{b}}=\left[\begin{array}{lllll}
1.7568 & -0.1464 & -0.0569 & 7.0000 & -0.2115
\end{array}\right]^{\top} \\
& \Rightarrow \widehat{\alpha}_{1}=\frac{\overrightarrow{b_{e}}}{\left\|\overrightarrow{b_{e}}\right\|}=\left[\begin{array}{lllll}
0.2433 & -0.0203 & -0.0079 & 0.9693 & -0.0293
\end{array}\right]^{\top}
\end{aligned}
$$

In order to get the other basis vector $\widehat{\alpha}_{2}$, we pick another random vector $\left.\vec{c}=\left[\begin{array}{llll}1 & 2 & 3 & 5\end{array}\right] 40\right]^{\top}$. This time however, we need to project \vec{c} onto the space spanned by $\widehat{\beta}_{1}, \widehat{\beta}_{2}, \widehat{\beta}_{3}$ and $\widehat{\alpha}_{1}$.
$\widehat{\alpha}_{2}=\frac{\vec{c}-\left(\vec{c}^{\top} \widehat{\beta}_{3}\right) \widehat{\beta}_{3}-\left(\vec{c}^{\top} \widehat{\beta}_{2}\right) \widehat{\beta}_{2}-\left(\vec{c}^{\top} \widehat{\beta}_{1}\right) \widehat{\beta}_{1}-\left(\vec{c}^{\top} \widehat{\alpha}_{1}\right) \widehat{\alpha}_{1}}{\left\|\vec{c}-\left(\vec{c}^{\top} \widehat{\beta}_{3}\right) \widehat{\beta}_{3}-\left(\vec{c}^{\top} \widehat{\beta}_{2}\right) \widehat{\beta}_{2}-\left(\vec{c}^{\top} \widehat{\beta}_{1}\right) \widehat{\beta}_{1}-\left(\vec{c}^{\top} \widehat{\alpha}_{1}\right) \widehat{\alpha}_{1}\right\|}=\left[\begin{array}{llll}-0.9586 & 0.0799 & 0.0311 & 0.2460\end{array} \quad 0.1154\right]^{\top}$
(ii) (see part (i))
(iii) (see part (i))
(iv) (see part (i)) The projection of \vec{b} onto \mathbf{S}^{\perp} is simply the error vector:

$$
\overrightarrow{b_{e}}=\left[\begin{array}{lllll}
1.7568 & -.1464 & -.0569 & 7.0000 & -0.2115
\end{array}\right]^{\top}
$$

