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Homework 3 Solutions

(Send your grades to eel20staff@gmail.com. Check the course website for details)
Problem 1 (Noise suppression system for airplanes, continued.)

(a) From Homework 2, the impulse response of the noise suppression filter is g[n| =
$6[n — 2]. Thus the frequency response is:

. >0 . 2 1 . 1 .
G(e?¥) = Z g[nle™7v" = 3 + ge_j“’ + 56_32“’.

n=-—oo

(b) See Figure 1.
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Figure 1: Problem 1b.

Problem 2 (Frequency responses.)

The output of an LTI system when the input is a linear combination of complex exponentials has a simple

form:

It h(t) = H(jw)el™, H(jw) = / h(t)e=T=tdi



(a) H(jw) = 55, 2(t) = 2¢/* — cos(—mt) = 2¢/* — G- -
o et e I
= y(t) = a(t) * y(t) = 2™ — H(jm) 5 — H(~jm)
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(b) In order to take advantage of the Eigenfunction property, we need to write x(t) as a linear combination
of complex exponentials (Fourier Series expansion). z(t) is periodic with fundamental period 7' = 10~

2
= wo = % — 27 % 10000 = 6.28 x 10*
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Notice that ay = a*,, which is what we expect because z(t) is a real signal. Also, H(jw) rejects all
frequencies w > 1.5 x 10°rad/s. Therefore, all harmonics |k| > 2 will be gone.

||

H(jw) = { g(l ~ TH0000)

if jw| < 150000
otherwise

y(t) = a_oH(—j2wo)e 72" + a_1 H(—jwo)e 7" + agH(j0) + a1 H (jwo)e?*°" + asH (j2uwp)e’*°"

H(j0) =8, H(—jwo) = H(jwo) ~ 4.649, H(—j2uwo) = H(j2wo) ~ 1.298
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Problem 3 (Continuous-time Fourier series.)
(a) x(t) is periodic with period T'= 3 and fundamental frequency wg = 2% = %’T , and over one period
is defined as
2, 0<t<1
wt) =4 1, 1<t<?2
0, 2<t<3

The Fourier series coefficients of z(t) are

and for k #0,

p2my 1 2 e
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eI /3 sin(km/3) 4+ e9¥27/3 sin (k27 /3)
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Now y(t) = x(3t) is periodic with T'=1 and wg = 27 . By the time scaling property of the CTFS, y(t)
has FS coefficients by = ax . Note however that x(t) = Z,;“;ioo are 7t and y(t) = Z,;“;ioo ape Ik2mt
have different fundamental frequencies.

(b) x(t) is periodic with T'=4 and wy = 7/2. Example 3.5 on page 193 of OWN shows that a periodic
square wave defined over one period as

1
5, t < =
wo={z U

has 'S coefficients by, = — . Since ap = (— 1)’“% = bred™ | by the time shifting property of
the CTFS, z(t) = y(t +2). Thus x(t) is a period square wave defined over one period as

sin(lmr/S

1
w(t) =4 7 T/4<t<9/4
0, 0<t<7/4and9/4<t<4

(¢) Let x(t) be a periodic signal with fundamental period T and FS coefficients ay . By the time shifting
property of the CTFS, the FS coefficients of z(t —tg) are by = apeIFF o Similarly, the FS coefficients
of z(t +ty) are ¢ = apel*Fto . Therefore, the FS coefficients of z(t — to) + z(t +to) are

di =br + ¢ = (e‘jk%ﬂto + ejkz%to) ar = 2 cos(k2mto/T)ay



Problem 4 (CTFS Properties.)
OWN 3.42

x(t) is a real-valued signal with fundamental period 7" and Fourier Series Coefficients aj . we need to
show the following;:

(a) ar = a*, and ap is real.

From the definition, ag = = [, (t)dt. Since z(t) is real, the integral can only be real.

1 .
ap = T/ z(t)e 7*otdt taking the complex conjugate of both sides
T

1 . 1 .
= az = {T/Tx(t)e—kaotdt}* _ T/Tx(t)*ejkwotdt
1 / koot
== [ xz@)e?™'dt = a_y
T T

This implies that Re{ax} = Re{a—_x} and Sm{ar} = —Sm{a—_x}. The real part is even and the
imaginary part is odd.

(b) x(t) is even (i.e z(t) = z(—t)). N
z(t) = Z apeltet

k=—oc0
oo
z(—t) = Z ape Ikt
k=—o00
oo oo
z(t) = z(—t) & Z apeltt = Z ape IRt
k=—o0 k=—o00

= Qp = aQ_k

Therefore, ar = a_p = aj . This is true only if Im{a,} =0.

(c) x(t) is odd (i.e z(t) = —z(—t)). N
z(t) = Z apeltt

k=—o0
o0
z(—t) = Z ape ket
k=—o0
o0 o0
z(t) = —z(—t) & Z apeltt = Z —ape Ikt
k=—o00 k=—oc0
= A = —a_g
Therefore, ar = —a—r = —aj . This is true only if Re{ar} = 0. Since a¢ cannot be imaginary, it must
be 0.

(d) We know that we can write the even part of x(t) as % .
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Problem 5 (CTFS Properties.)
OWN 3.44

(a) From (1) and (2), z(t) = > 00 apel*ot wy=2 =2 a_,=aj
(b) From (3), x(t) = a1el*ot 4 ajeIw0t 4 qoel?@ot 4 gie—J2wot

(b) From (4):

z(t) = a1e7°t 4 atem It 4 gyed?ot 4 glemI2wot
z(t —3) = —a1e?°t — ajeIwol 4 asel?@ot 4 age*ﬂ‘“ot
x(t—3)=—-z(t) =ax=a5=0
= x(t) = aye?“°t + afe w0t

(c) |z@)]? = x(t)x*(t) = (a1e?°! + aje Iwot)(afe Iwot + qrefol) = 2]a1|? + afel?ot + a{ze_ﬂ“’ot.
When we integrate over a period, the last two terms will disappear.

1/| (1)[2dt 1/3 2ar[2dt = 2o * = L
—_— €T = — a = a = —
T Jr 6/ " 2

1
:>|CL1|:§

Therefore, from (5) and (6), a1 = a
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1
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= x(t) = = (I3 4 e7I5Y) = cos(gt)

N =

= A=1, B:%, C=0



Problem 6 (CTFS Properties.)

(a) y1(t) = z(t — L) has Fourier series coefficients by . From the time-shifting property, we know that
oy ,
b = ape P03 = qre™ R = g (—1)F.

ya2(t) = Od{y(t)} = w has Fourier series coefficients ¢ . From the properties of Fourier series,
we know that ¢ = jSm{br} = 7(—1)*Sm{ax}. However, this property only holds when the signal is
real. The question did not specify z(t) to be real. If we assume that z(t) is complex, we can still use
the Time Reversal property.

welt) = Oafy(t)y = LI o be bk oD ek Ly, -y

Notice that when x(t) is real, aj = a_j, which leads to ar — a_r = ar — aj = 25Sm{ax}.

(b) ys(t) = x(% —t) = ZZO:_OO akejk%ﬂ(g,t)

o0
LT l.27mt
= ys3(t) = g ape’®s e IkT
k=—oc0

(e}

= Y a () reM T
k=—o0
Therefore, y3(t) is periodic with fundamental period 7' and Fourier series coefficients dy = 7 Fa_y, .
Problem 7 (DTFS/Frequency responses.)
OWN 3.16
(a) r1[n] = (=1)" = 9™ . The output yi[n] = (x1 * h)[n] =0, since H(e!™) =0.

(b) x2[n] = 1+sin(3En+Z). The DC component ¢’ disappears while the remaining part sin(3Zn+ T)
passes without any distortion. Therefore, ya[n] = (2 * h)[n] = sin(3Fn + 7).

(¢) s[n] = 3202 o (3)" Fuln — 4]

x3[n —4] = i (1)”*4*4ku[n — 4 — 4k

2
k=—oo
— 1
= Z (§)n74(k+1)u[n —4(k+1)] (replace k by m=k+1)
k=—oo
S 1 n—4am
- Z (5) T un — 4m] = x3[n]

Therefore, x3[n| is periodic with period N =4.

3

. =  nm . . 3w

x3[n] = g a2 =y + a1e? T + ase?" + azel™ 2
k=0

However, notice that H(e®) = 0, H(ei%) = 0, H(e/™) = 0, H(e?7) = 0. Therefore, ys[n] =
(3 * h)[n] =0 (we don’t need to compute the Fourier series coeflicients).



Problem 8 (Discrete-time Fourier series.)

(a)

(a) x[n] is periodic with N =7 and wy = 27/7. The Fourier series coefficients of z[n] are specified

over one period (0 <k <6) as ap = % and

1

_ —jkwn
w = Z x[nle™
n=(N)

4
_ 1 § efjkwon
7 n=0
11— e Jhwod
71— eJhwo
1 e—ikwo} (ejk‘“o% - e*jk‘“og)

g 1 . .
7@ Jkwo 5 (e]kwoé _efjka%)

1 _j%rksin(%”k)

7 sin(Zk)

(b) x[n] is periodic with N =6 and wy = 7/3. The DTFS coefficients of z[n]| are specified over one
period (0 <k <5) as ag = % and

3
1 .
ap = 6 E e Jkwon
n=0

- 4 . 4
1 e—ikwo (ejk‘“oi - e*J’WOE)

o honl 7 )
6 ¢—dkwos (ekao% _e*kao%)

(b)

(a) x[n] is periodic with N =8 and wo = 7, and has DTFS coefficients

ap = COS 1 sin 1

1, 4= - 1 - .
= (@ T e 4o (4% ).
Now, looking at the synthesis equation for the DTFS, a; = %Zn:(& z[n]e 7Fi" | we see that
z[l] = z[-1] =4, z[3] = 4j, and z[-3] = —4j. Thus we can express one period (0 <n < 7) of
x[n] as

z[n] = 48[n — 1] + 450[n — 3] — 45d[n — 5] + 46[n — 7].



(b) x[n] is periodic with N =8, wo = 7§, and DTFS coefficients az = sin (%”) = % (ejk% - e‘jkg)
for 0 <k <6,and a;y =0.

z[n] = Z apelkeon
(

k=

(ejkgejkgn _ efjkgejkgn)

I
&) =
~
Il Mc: \Z/

0

I
L=
[]-

6
G (mo 1 G(mo _m
I(En+3) - Zeﬂ“(z”*ﬂ
0 2] k=0

—

1 l—ejm) 1 (1—ej75)
25 (1 —eio) 25 (1 —eif)
1 /702 (e=ITa/2 _ ¢iTal2) | oiTB/2 (¢=9TB/2 _ (iT8/2)
2j eia/? (e—ja/2 _ eja/2) 27 eiB/? (6—15/2 — ejﬂ/2)
[ easinGGn ) | s - 3)
2j sin(3(2n+ %)) sin(3(3n — %))

where we denoted o = fn+ 3 and 8= 9n— 7.

Problem 9 (Parseval’s Relation.)

(a) First let’s consider the periodic signal z(t) = Y ~- _ f(t—4n) and derive its Fourier series coefficients

ay . We will then derive the Fourier series coefficients of y(¢) using the convolution property.

z(t) is periodic with fundamental period T = 4. Therefore, wy = 2% =

[ee]
=z(t) = Z apelkent

k=—o00

1
1 ) -1 [z .
= ap = T/ f(t)e Ikwotqr = T /1 e~ Ikwot gy
T _

2

1 ) 1 o w w
_ —jkwot(1/2 — —jk5 _ ik
4jkwoe |_1/2 4jk;w0 (6 ’ “ )
_ -1 (i jkw_Qo _e_jkwTO)) _ —sin(kw—;) _ —bln(k%)
2kwqg " 2j 2kwq km
N 3 ifk=0
ar = —sin(kZ .
g % otherwise

Let by be the Fourier series coefficients of y(t). Since y(t) is periodic with fundamental period T', then
we know from the convolution property that by = T'a? .

> . 3 if k=0
= y(t)= D ™ot by :{ dsin?(k3)

N —ET otherwise
c=—00

The power of the signal y(t) is defined as # [, |y(t)|*dt. From Parseval’s Relation, we know that
+ [o ly(@)2dt = 3257 |bk|?. Therefore, in order to approximate y(t) as a finite linear sum of complex

exponentials, we need to retain the coefficients that contain most of the power. We also know that the
Fourier series coefficients by are real, positive and even and strictly decreasing as |k| increases.



Mo

§ bke]kwot

/|y )2t = /|<t>|2dt

1 L(t+1)3, 1
= — 1 —_ _ = —
2/_1(’“r Vit = 2 3 =" 6

Therefore, we need to choose M; and My such that Ziu:iM be|> > 2 =0.15.

1 2
b= 15 = 00625, bf =17, = () = 0.041, B3 =07, = (

Notice that bZ + b3 + b2, + b3 > 0.15. Also, this sum is minimum (i.e. if we remove any of the terms,
the inequaltiy no longer holds).

g(t) = bo + brel®ot 4 e Iwot 4 phoed2wot — b 4 2h, cos(wot) + byed2wot
2(t) = y(t) cos(20mt). Since cos(207t) = £ (e40wot 4 =740w0t) ig a]s0 periodic wit = 4, then
b 20 Si 20 5 (e740wot J40wot 1 d h T =4, th
z(t) also has a fundamental period T = 4. Let the ¢, be the Fourier series coefficients of z(t). Also,
let z(t) = z1(t) + z2(t), where z1(t) = 3e/400ty(t) and 23(t) = Je 91%0ty(t). Let 7, and sy be the

Fourier series coefficients of z1(t) and z3(t) respectively.

1 1
T = Ebk7407 s = §bk+4o

Ckp =T + Sk

Since the FS coefficients of y(t) diminish very quickly, at least one term in this sum will be insignificant.

_ 1 2, 1 2 2
P, = T/ |2(t) 2dt = T/ (1) 2 cos?(20mt) dt

= —/| - —cos(407rt)) = —+—/ ly(t)|? cos(40mt)dt
1 / ly(1)]2 cos(40t)dt ~ 0
T Jp
P,
P.=

The approximation 55 [, [y(t)|? cos(40mt)dt = 0 is valid since cos(407t) varies at a much higher rate
than y(¢). Because we are scaling the shifted verions of by by a factor of % in order to get 7 and sg,
we will need twice the terms we used in part (a). In other words Z(t) = y(¢) cos(40wot) .

Problem 10 (Fourier Series and Gibbs phenomenon - Matlab.)



(a)

Ck

1
/ p(t)efj%rktdt
0

1/2 1
/ e—jQﬂ'ktdt _ / e—jQTrktdt
0 1/2

— _j]2'ﬂ-k (efjﬂk _1— efj27rk + efjﬂ'k)

1—eimk

Jrk

1
co = / p(t)dt =0
0
(b) The following Matlab code generates Figure 2.

function [] = gibbs(;

[t10, p10, y10] = FS(10);

[t100, p100, y100] = FS(100);
[t1000, p1000, y1000] = FS(1000);
figure;

plot (£1000,y1000, ‘g-");

hold on;
stairs(t1000,p1000, ‘k-=");
plot(t100,y100, ‘k-?);
plot(t10,y10, ‘b=");
title(‘Fourier series convergence and Gibbs phenomenon’);
xlabel(‘t?);

ylabel (‘pN(t)’);

function [t, p, y] = FS(N)

k = (-N:N);

t = linspace(-.5,.5,20%N+1);

p = (£>=0);

p=2.%p - 1;

c = (1 - exp(-j*pi.*k))./(G*pi.*k);

c(N+1) = 0; % ck at k=0

y = zeros(size(t));

for i=1:length(c)

y =y + c(i)*exp(j*2*xpixk(i).*t);
end

y = real(y);

The partial sum approximations at ¢ = 0 are pyn(0) = 0, which does not agree with the value of
the function p(0) =1.

(¢) The maximum overshoot stays constant as the number of terms in the partial sum approximation
increases, maz|p(t) — pn(t)] = 1.18.

10



Fourier series convergence and Gibbs phenomenon
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Figure 2: Problem 10b.

(d) As the number of terms in the partial sum approximation increases, the time-locations of the
maximum overshoot gets closer and closer to the points of discontinuity at ¢t = 0,40.5.

Problem 11 (Orthogonality.)

(i) In order to find an orthormal basis, we follow the Gram-Schmidt algorithm. Since we have four
vectors, we will have at most four basis vectors. Lets call them (1, 02,03, and (4.

— —
U1

Bi=— =YL _[0.1474 0.5808 0.2049 0 0.7372]
[oill V46
N = (=T A\A
By =222 BB 0130 06962 — 02733 0 0.6637]
103 — (v2 T B1) Bl

11
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— —T A\ —TA\A
By = 208 b2 @_(U_ﬁ BB 10,0090 04009 —0.9151 0 0.0435]T
lvs — (03 T B2)B2 — (v3 T B1) 1|
B= U= O B)Bs = G B)Ba = BB _ g g g
03 — (037 B3)Bs — (021 B2)Ba — (02 T 1)

Therefore, we have only three basis vectors for S (not surprising since vy = vy + 2v3 ).

(i)
77 = w11 B1 + wia P + wi3fs = (Ungl)Bl + (U_fTBz)BQ + (U_1>TB3)B3 = V4603,

U2 2151 + w2252 + wzsﬁs (UQTB\l)Bl + (?QTBQ)BQ + (@Tgs)as = 6-192631 + 6-682252

—

U3 = w3151 + w32 B + wssPs = (U3 B1)B1 + (U3 B2) B2 + (U3 B3)Bs = 12.09023; + 10.046173; + 9.63863;

01 = war B+ wazBa + wazBs = (01 B1)B1 + (04| Ba) B2 + (01 Bs)Bs = 19.167553; + 13.364503,
Note: the answer to this problem is not unique. However, all answers must satisfy the following;:
BBy =oli—3] i,j=1,23
T — wi B+ winf +wigBs =0 i=1,2,3,4

Also, if you are using matlab, you probably won’t be getting the answers to be exactly what you expect
due to finite precision.

Problem 12 (Projections.)

(i) All vectors in S must be orthogonal to every vector in S :

Z7eSt e T B =0 Yicios

Since S has rank 3, then the rank of S* is 5 — 3 = 2. Therefore, we need to find two basis vectors @
—
and Qs . If we take any random vector ' and project it onto S to get # , then we know that the error

vector Y — z will be orthogonal to S (Orthogonality Principal). Since S is a “very thin slice” of R?,

any vector we choose at random will most likely NOT be in S. Since we are going to do a projection
—

anyway, let’s choose b =[1 —1 47 —7]T

T31)B1 = [-0.7568 —0.8536 4.0569 0 —6.7885]"

— — T
belS=0b— b =[1.7568 —0.1464 —0.0569 7.0000 —0.2115]

—
. be

= a; = ||b_>|| =[0.2433 —0.0203 —0.0079 0.9693 — 0.0293]"
€
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In order to get the other basis vector @s, we pick another random vector ¢ = [1 2 3 5 40]"T. This
time however, we need to project ¢ onto the space spanned by (1, 32,33 and aj .

T

KR)

)
)

)

- (?T 1 51 - (? al)al T
— — ———— = [-0.9586 0.0799 0.0311 0.2460 0.1154]
2 — (¢ TB1)BL — (¢ Tan)au ||

®

(i) (see part (i)
(i) (see part (1))

(iv) (see part (i)) The projection of b onto ST is simply the error vector:

P T
b, = [1.7568 —.1464 — .0569 7.0000 — 0.2115]
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