
EECS 120 Signals & Systems University of California, Berkeley: Fall 2006
Ramchandran September 21, 2006

Homework 3 Solutions

(Send your grades to ee120staff@gmail.com. Check the course website for details)

Problem 1 (Noise suppression system for airplanes, continued.)

(a) From Homework 2, the impulse response of the noise suppression filter is g[n] = 2
3δ[n] + 1

3δ[n − 1] +
1
3δ[n − 2] . Thus the frequency response is:

G(ejω) =

∞∑

n=−∞

g[n]e−jωn =
2

3
+

1

3
e−jω +

1

3
e−j2ω .

(b) See Figure 1.
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Figure 1: Problem 1b.

Problem 2 (Frequency responses.)

The output of an LTI system when the input is a linear combination of complex exponentials has a simple
form:

ejωt ∗ h(t) = H(jω)ejω , H(jω) =

∫ ∞

−∞

h(t)e−jωtdt
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(a) H(jω) = 1
jω , x(t) = 2ej2t − cos(−πt) = 2ej2t − ejπt

2 − e−jπt

2

⇒ y(t) = x(t) ∗ y(t) = 2H(j2)ej2t − H(jπ)
ejπt

2
− H(−jπ)

e−jπt

2

= −jej2t − 1

j2π
ejπt +

1

j2π
e−jπt = −jej2t − 1

π
sin(πt)

(b) In order to take advantage of the Eigenfunction property, we need to write x(t) as a linear combination
of complex exponentials (Fourier Series expansion). x(t) is periodic with fundamental period T = 10−4s .

⇒ ω0 =
2π

T
= 2π ∗ 10000 ≈ 6.28 × 104

x(t) =

∞∑

k=−∞

akejkω0t

ak =
1

T

∫

T

x(t)e−jkω0tdt =
ω0

π

∫ Td

0

e−jkω0tdt

= −e−jkω0t

jkπ
|t=Td

t=0

ak =

{
ω0Td

π = 1
2 if k = 0

1−e−jkω0Td

jkπ = 1−e−jk π
2

jkπ otherwise

Notice that ak = a∗
−k , which is what we expect because x(t) is a real signal. Also, H(jω) rejects all

frequencies ω > 1.5 × 105rad/s . Therefore, all harmonics |k| > 2 will be gone.

H(jω) =

{
8(1 − |ω|

150000 ) if |ω| ≤ 150000
0 otherwise

y(t) = a−2H(−j2ω0)e
−j2ω0t + a−1H(−jω0)e

−jω0t + a0H(j0) + a1H(jω0)e
jω0t + a2H(j2ω0)e

j2ω0t

H(j0) = 8, H(−jω0) = H(jω0) ≈ 4.649, H(−j2ω0) = H(j2ω0) ≈ 1.298

a0 =
1

2
, a1 =

1

π
(1 − j) =

√
2e−j π

4 , a−1 =
1

π
(1 + j) =

√
2ej π

4 , a2 =
−j

π
, a−2 =

j

π

⇒ y(t) = a0H(j0) + H(jω0)(a1e
jω0t + a∗

1e
−jω0t) + H(j2ω0)(a2e

2jω0t + a∗
2e

−j2ω0t)

⇒ y(t) ≈ 4 +
13.15

π
cos(ω0 −

π

4
) − 2.59

π
sin(2ω0t)

(c) h[n] = (1
3 )nu[n], x[n] = 3ej 3π

4
(n−2) − sin(5π

4 n) . First we need to find the frequency response H(ejω) :

H(ejω) =
∞∑

k=−∞

h[k]e−jkω =
∞∑

k=0

(
1

3
)ke−jkω =

∞∑

k=0

(
1

3
e−jω)k =

1

1 − 1
3e−jω

x[n] = 3e−j 3π
2 ej 3π

4
n +

j

2
ej 5π

4
n − j

2
e−j 5π

4
n = j(3ej 3π

4
n +

1

2
ej 5π

4
n − 1

2
e−j 5π

4
n)

⇒ y[n] = j((
3

1 − 1
3e−j 3π

4

)ej 3π
4

n + (
1
2

1 − 1
3e−j 5π

4

)ej 5π
4

n − (
1
2

1 − 1
3ej 5π

4

)e−j 5π
4

n)
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= j((
3

1 + 1
3ej π

4

)ej 3π
4

n + (
1
2

1 + 1
3e−j π

4

)ej 5π
4

n − (
1
2

1 + 1
3ej π

4

)e−j 5π
4

n)

Problem 3 (Continuous-time Fourier series.)

(a) x(t) is periodic with period T = 3 and fundamental frequency ω0 = 2π
T = 2π

3 , and over one period
is defined as

x(t) =






2, 0 < t ≤ 1
1, 1 < t ≤ 2
0, 2 < t ≤ 3

.

The Fourier series coefficients of x(t) are

a0 =
1

T

∫

T

x(t)dt =
1

3

∫ 3

0

x(t)dt = 1,

and for k 6= 0 ,

ak =
1

T

∫

T

x(t)e−jkω0tdt

=
1

3

∫ 1

0

2e−jk 2π
3

tdt +
1

3

∫ 2

1

e−jk 2π
3

tdt

=
1

−jkπ

(
e−jk 2π

3 − 1
)

+
1

−jk2π

(
e−jk 4π

3 − e−jk 2π
3

)

=
1

−jk2π

((
e−jk 2π

3 − 1
)

+
(
e−jk 4π

3 − 1
))

=
1

−jk2π

(
e−jk π

3

(
e−jk π

3 − ejk π
3

)
+ e−jk 2π

3

(
e−jk 2π

3 − ejk 2π
3

))

=
e−jkπ/3 sin(kπ/3) + e−jk2π/3 sin(k2π/3)

kπ
.

Now y(t) = x(3t) is periodic with T = 1 and ω0 = 2π . By the time scaling property of the CTFS, y(t)

has FS coefficients bk = ak . Note however that x(t) =
∑∞

k=−∞ ake−jk 2π
3

t and y(t) =
∑∞

k=−∞ ake−jk2πt

have different fundamental frequencies.

(b) x(t) is periodic with T = 4 and ω0 = π/2 . Example 3.5 on page 193 of OWN shows that a periodic
square wave defined over one period as

y(t) =

{
1
2 , |t| < 1

4
0, 1

4 < |t| < 2

has FS coefficients bk = sin(kπ/8)
2kπ . Since ak = (−1)k sin(kπ/8)

2kπ = bkejπk , by the time shifting property of
the CTFS, x(t) = y(t + 2) . Thus x(t) is a period square wave defined over one period as

x(t) =

{
1
2 , 7/4 < t < 9/4
0, 0 < t < 7/4 and 9/4 < t < 4

.

(c) Let x(t) be a periodic signal with fundamental period T and FS coefficients ak . By the time shifting

property of the CTFS, the FS coefficients of x(t− t0) are bk = ake−jk 2π
T

t0 . Similarly, the FS coefficients

of x(t + t0) are ck = akejk 2π
T

t0 . Therefore, the FS coefficients of x(t − t0) + x(t + t0) are

dk = bk + ck =
(
e−jk 2π

T
t0 + ejk 2π

T
t0

)
ak = 2 cos(k2πt0/T )ak.
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Problem 4 (CTFS Properties.)

OWN 3.42

x(t) is a real-valued signal with fundamental period T and Fourier Series Coefficients ak . we need to
show the following:

(a) ak = a∗
−k and a0 is real.

From the definition, a0 = 1
T

∫
T x(t)dt . Since x(t) is real, the integral can only be real.

ak =
1

T

∫

T

x(t)e−jkω0tdt taking the complex conjugate of both sides

⇒ a∗
k = { 1

T

∫

T

x(t)e−jkω0tdt}∗ =
1

T

∫

T

x(t)∗ejkω0tdt

=
1

T

∫

T

x(t)ejkω0tdt = a−k

This implies that ℜe{ak} = ℜe{a−k} and ℑm{ak} = −ℑm{a−k} . The real part is even and the
imaginary part is odd.

(b) x(t) is even (i.e x(t) = x(−t) ).

x(t) =
∞∑

k=−∞

akejkωt

x(−t) =

∞∑

k=−∞

ake−jkωt

x(t) = x(−t) ⇔
∞∑

k=−∞

akejkωt =

∞∑

k=−∞

ake−jkωt

⇒ ak = a−k

Therefore, ak = a−k = a∗
k . This is true only if ℑm{ak} = 0 .

(c) x(t) is odd (i.e x(t) = −x(−t) ).

x(t) =

∞∑

k=−∞

akejkωt

x(−t) =

∞∑

k=−∞

ake−jkωt

x(t) = −x(−t) ⇔
∞∑

k=−∞

akejkωt =

∞∑

k=−∞

−ake−jkωt

⇒ ak = −a−k

Therefore, ak = −a−k = −a∗
k . This is true only if ℜe{ak} = 0 . Since a0 cannot be imaginary, it must

be 0 .

(d) We know that we can write the even part of x(t) as x(t)+x(−t)
2 .

⇒ x(t) + x(−t)

2
=

1

2
(

∞∑

k=−∞

akejkωt +

∞∑

k=−∞

ake−jkωt)
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=
1

2
(

∞∑

k=−∞

akejkωt +

∞∑

k=−∞

a−kejkωt) =
1

2

∞∑

k=−∞

(ak + a−k)ejkωt =

∞∑

k=−∞

1

2
(ak + a∗

k)ejkωt

=
∞∑

k=−∞

ℜe{ak}ejkωt

(e) We know that we can write the odd part of x(t) as x(t)−x(−t)
2 .

⇒ x(t) − x(−t)

2
=

1

2
(

∞∑

k=−∞

akejkωt −
∞∑

k=−∞

ake−jkωt)

=
1

2
(

∞∑

k=−∞

akejkωt −
∞∑

k=−∞

a−kejkωt) =
1

2

∞∑

k=−∞

(ak − a−k)ejkωt =
∞∑

k=−∞

1

2
(ak − a∗

k)ejkωt

=

∞∑

k=−∞

jℑm{ak}ejkωt

Problem 5 (CTFS Properties.)

OWN 3.44

(a) From (1) and (2), x(t) =
∑∞

k=−∞ akejkω0t, ω0 = 2π
T = π

3 , a−k = a∗
k

(b) From (3), x(t) = a1e
jω0t + a∗

1e
−jω0t + a2e

j2ω0t + a∗
2e

−j2ω0t .

(b) From (4):

x(t) = a1e
jω0t + a∗

1e
−jω0t + a2e

j2ω0t + a∗
2e

−j2ω0t

x(t − 3) = −a1e
jω0t − a∗

1e
−jω0t + a2e

j2ω0t + a∗
2e

−j2ω0t

x(t − 3) = −x(t) ⇔ a2 = a∗
2 = 0

⇒ x(t) = a1e
jω0t + a∗

1e
−jω0t

(c) |x(t)|2 = x(t)x∗(t) = (a1e
jω0t + a∗

1e
−jω0t)(a∗

1e
−jω0t + a1e

jω0t) = 2|a1|2 + a2
1e

j2ω0t + a∗2

1 e−j2ω0t .
When we integrate over a period, the last two terms will disappear.

1

T

∫

T

|x(t)|2dt =
1

6

∫ 3

−3

2|a1|2dt = 2|a1|2 =
1

2

⇒ |a1| =
1

2

Therefore, from (5) and (6), a1 = a∗
1 = 1

2 .

⇒ x(t) =
1

2
(ej π

3
t + e−j π

3
t) = cos(

π

3
t)

⇒ A = 1, B =
π

3
, C = 0
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Problem 6 (CTFS Properties.)

(a) y1(t) = x(t − T
2 ) has Fourier series coefficients bk . From the time-shifting property, we know that

bk = ake−jkω0
T
2 = ake−jkπ = ak(−1)k .

y2(t) = Od{y(t)} = y(t)−y(−t)
2 has Fourier series coefficients ck . From the properties of Fourier series,

we know that ck = jℑm{bk} = j(−1)kℑm{ak} . However, this property only holds when the signal is
real. The question did not specify x(t) to be real. If we assume that x(t) is complex, we can still use
the Time Reversal property.

y2(t) = Od{y(t)} =
y(t) − y(−t)

2
⇔ ck =

bk − b−k

2
=

ak(−1)k − a−k(−1)−k

2
=

1

2
(−1)k(ak − a−k)

Notice that when x(t) is real, a∗
k = a−k , which leads to ak − a−k = ak − a∗

k = 2jℑm{ak} .

(b) y3(t) = x(T
4 − t) =

∑∞
k=−∞ akejk 2π

T
( T

4
−t)

⇒ y3(t) =

∞∑

k=−∞

akejk π
2 e−jk 2πt

T

=

∞∑

k=−∞

a−k(j)−kejk 2πt
T

Therefore, y3(t) is periodic with fundamental period T and Fourier series coefficients dk = j−ka−k .

Problem 7 (DTFS/Frequency responses.)

OWN 3.16

(a) x1[n] = (−1)n = ejπn . The output y1[n] = (x1 ∗ h)[n] = 0 , since H(ejπ) = 0 .

(b) x2[n] = 1+sin(3π
8 n+ π

4 ) . The DC component e0n disappears while the remaining part sin(3π
8 n+ π

4 )
passes without any distortion. Therefore, y2[n] = (x2 ∗ h)[n] = sin(3π

8 n + π
4 ) .

(c) x3[n] =
∑∞

k=−∞(1
2 )n−4ku[n− 4k]

x3[n − 4] =
∞∑

k=−∞

(
1

2
)n−4−4ku[n − 4 − 4k]

=

∞∑

k=−∞

(
1

2
)n−4(k+1)u[n − 4(k + 1)] (replace k by m = k + 1)

=

∞∑

m=−∞

(
1

2
)n−4mu[n − 4m] = x3[n]

Therefore, x3[n] is periodic with period N = 4 .

x3[n] =

3∑

k=0

akejkn π
2 = a0 + a1e

j nπ
2 + a2e

jnπ + a3e
jn 3π

2

However, notice that H(ej0) = 0, H(ej π
2 ) = 0, H(ejπ) = 0, H(ej 3π

2 ) = 0 . Therefore, y3[n] =
(x3 ∗ h)[n] = 0 (we don’t need to compute the Fourier series coefficients).
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Problem 8 (Discrete-time Fourier series.)

(a)

(a) x[n] is periodic with N = 7 and ω0 = 2π/7 . The Fourier series coefficients of x[n] are specified
over one period (0 ≤ k ≤ 6) as a0 = 5

7 and

ak =
1

N

∑

n=〈N〉

x[n]e−jkωn

=
1

7

4∑

n=0

e−jkω0n

=
1

7

1 − e−jkω05

1 − e−jkω0

=
1

7

e−jkω0
5

2

e−jkω0
1

2

(
ejkω0

5

2 − e−jkω0
5

2

)

(
ejkω0

1

2 − e−jkω0
1

2

)

=
1

7
e−j 4π

7
k sin(5π

7 k)

sin(π
7 k)

.

(b) x[n] is periodic with N = 6 and ω0 = π/3 . The DTFS coefficients of x[n] are specified over one
period (0 ≤ k ≤ 5) as a0 = 4

6 and

ak =
1

6

3∑

n=0

e−jkω0n

=
1

6

1 − e−jkω04

1 − e−jkω0

=
1

6

e−jkω0
4

2

e−jkω0
1

2

(
ejkω0

4

2 − e−jkω0
4

2

)

(
ejkω0

1

2 − e−jkω0
1

2

)

=
1

6
e−j π

2
k sin(2π

3 k)

sin(π
6 k)

(b)

(a) x[n] is periodic with N = 8 and ω0 = π
4 , and has DTFS coefficients

ak = cos

(
kπ

4

)
+ sin

(
k3π

4

)

=
1

2

(
ejk π

4 + e−jk π
4

)
+

1

2j

(
ejk 3π

4 − e−jk 3π
4

)
.

Now, looking at the synthesis equation for the DTFS, ak = 1
8

∑
n=〈8〉 x[n]e−jk π

4
n , we see that

x[1] = x[−1] = 4 , x[3] = 4j , and x[−3] = −4j . Thus we can express one period (0 ≤ n ≤ 7) of
x[n] as

x[n] = 4δ[n − 1] + 4jδ[n − 3] − 4jδ[n − 5] + 4δ[n − 7].

7



(b) x[n] is periodic with N = 8 , ω0 = π
4 , and DTFS coefficients ak = sin

(
kπ
3

)
= 1

2j

(
ejk π

3 − e−jk π
3

)

for 0 ≤ k ≤ 6 , and a7 = 0 .

x[n] =
∑

k=〈N〉

akejkω0n

=
1

2j

6∑

k=0

(
ejk π

3 ejk π
4

n − e−jk π
3 ejk π

4
n
)

=
1

2j

6∑

k=0

ejk( π
4

n+ π
3 ) − 1

2j

6∑

k=0

ejk( π
4

n−π
3 )

=
1

2j

(
1 − ej7α

)

(1 − ejα)
− 1

2j

(
1 − ej7β

)

(1 − ejβ)

=
1

2j

ej7α/2

ejα/2

(
e−j7α/2 − ej7α/2

)
(
e−jα/2 − ejα/2

) − 1

2j

ej7β/2

ejβ/2

(
e−j7β/2 − ej7β/2

)
(
e−jβ/2 − ejβ/2

)

=
1

2j

[
−ej 3π

4
n sin(7

2 (π
4 n + π

3 ))

sin(1
2 (π

4 n + π
3 ))

+ ej 3π
4

n sin(7
2 (π

4 n − π
3 ))

sin(1
2 (π

4 n − π
3 ))

]

where we denoted α = π
4 n + π

3 and β = π
4 n − π

3 .

Problem 9 (Parseval’s Relation.)

(a) First let’s consider the periodic signal x(t) =
∑∞

n=−∞ f(t−4n) and derive its Fourier series coefficients
ak . We will then derive the Fourier series coefficients of y(t) using the convolution property.

x(t) is periodic with fundamental period T = 4 . Therefore, ω0 = 2π
T = π

2 .

⇒ x(t) =
∞∑

k=−∞

akejkω0t

⇒ ak =
1

T

∫

T

f(t)e−jkω0tdt =
−1

4

∫ 1

2

−1

2

e−jkω0tdt

=
1

4jkω0
e−jkω0t|1/2

−1/2 =
1

4jkω0
(e−jk

ω0

2 − ejk
ω0

2 )

=
−1

2kω0
(

1

2j
(ejk

ω0

2 − e−jk
ω0

2 )) =
− sin(k ω0

2 )

2kω0
=

− sin(k π
4 )

kπ

⇒ ak =

{ −1
4 if k = 0
− sin(k π

4
)

kπ otherwise

Let bk be the Fourier series coefficients of y(t) . Since y(t) is periodic with fundamental period T , then
we know from the convolution property that bk = Ta2

k .

⇒ y(t) =

∞∑

k=−∞

bkejkω0t, bk =

{
1
4 if k = 0
4 sin2(k π

4
)

(kπ)2 otherwise

The power of the signal y(t) is defined as 1
T

∫
T |y(t)|2dt . From Parseval’s Relation, we know that

1
T

∫
T |y(t)|2dt =

∑∞
k=−∞ |bk|2 . Therefore, in order to approximate y(t) as a finite linear sum of complex

exponentials, we need to retain the coefficients that contain most of the power. We also know that the
Fourier series coefficients bk are real, positive and even and strictly decreasing as |k| increases.

8



⇒ ŷ(t) =

M2∑

k=−M1

bkejkω0t

Py =
1

T

∫

T

|y(t)|2dt =
1

4

∫ 1

−1

|g(t)|2dt

=
1

2

∫ 0

−1

(t + 1)2dt =
1

2

(t + 1)3

3
|t=0
t=−1 =

1

6

Therefore, we need to choose M1 and M2 such that
∑M

k=−M |bk|2 ≥ .9
6 = 0.15 .

b2
0 =

1

16
= 0.0625, b2

1 = b2
−1 = (

2

π2
)2 ≈ 0.041, b2

2 = b2
−2 = (

4

(2π)2
)2 ≈ 0.1

Notice that b2
0 + b2

1 + b2
−1 + b2

2 ≥ 0.15 . Also, this sum is minimum (i.e. if we remove any of the terms,
the inequaltiy no longer holds).

ŷ(t) = b0 + b1e
jω0t + b1e

−jω0t + b2e
j2ω0t = b0 + 2b1 cos(ω0t) + b2e

j2ω0t

(b) z(t) = y(t) cos(20πt) . Since cos(20πt) = 1
2 (ej40ω0t + e−j40ω0t) is also periodic with T = 4 , then

z(t) also has a fundamental period T = 4 . Let the ck be the Fourier series coefficients of z(t) . Also,
let z(t) = z1(t) + z2(t) , where z1(t) = 1

2ej40ω0ty(t) and z2(t) = 1
2e−j40ω0ty(t) . Let rk and sk be the

Fourier series coefficients of z1(t) and z2(t) respectively.

rk =
1

2
bk−40, sk =

1

2
bk+40

ck = rk + sk

Since the FS coefficients of y(t) diminish very quickly, at least one term in this sum will be insignificant.

Pz =
1

T

∫

T

|z(t)|2dt =
1

T

∫

T

|y(t)|2 cos2(20πt)dt

=
1

T

∫

T

|y(t)|2(1

2
+

1

2
cos(40πt))dt =

Py

2
+

1

2T

∫

T

|y(t)|2 cos(40πt)dt

1

2T

∫

T

|y(t)|2 cos(40πt)dt ≈ 0

Pz =
Py

2

The approximation 1
2T

∫
T |y(t)|2 cos(40πt)dt ≈ 0 is valid since cos(40πt) varies at a much higher rate

than y(t) . Because we are scaling the shifted verions of bk by a factor of 1
2 in order to get rk and sk ,

we will need twice the terms we used in part (a). In other words ẑ(t) = ŷ(t) cos(40ω0t) .

Problem 10 (Fourier Series and Gibbs phenomenon - Matlab.)
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(a)

ck =

∫ 1

0

p(t)e−j2πktdt

=

∫ 1/2

0

e−j2πktdt −
∫ 1

1/2

e−j2πktdt

=
1

−j2πk

(
e−jπk − 1 − e−j2πk + e−jπk

)

=
1 − e−jπk

jπk

c0 =

∫ 1

0

p(t)dt = 0

(b) The following Matlab code generates Figure 2.

function [] = gibbs();

[t10, p10, y10] = FS(10);

[t100, p100, y100] = FS(100);

[t1000, p1000, y1000] = FS(1000);

figure;

plot(t1000,y1000,‘g-’);

hold on;

stairs(t1000,p1000,‘k--’);

plot(t100,y100,‘k-’);

plot(t10,y10,‘b-’);

title(‘Fourier series convergence and Gibbs phenomenon’);

xlabel(‘t’);

ylabel(‘p N(t)’);

function [t, p, y] = FS(N)

k = (-N:N);

t = linspace(-.5,.5,20*N+1);

p = (t>=0);

p = 2.*p - 1;

c = (1 - exp(-j*pi.*k))./(j*pi.*k);

c(N+1) = 0; % c k at k=0

y = zeros(size(t));

for i=1:length(c)

y = y + c(i)*exp(j*2*pi*k(i).*t);

end

y = real(y);

The partial sum approximations at t = 0 are pN(0) = 0 , which does not agree with the value of
the function p(0) = 1 .

(c) The maximum overshoot stays constant as the number of terms in the partial sum approximation
increases, max|p(t) − pN (t)| ≈ 1.18 .

10
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Figure 2: Problem 10b.

(d) As the number of terms in the partial sum approximation increases, the time-locations of the
maximum overshoot gets closer and closer to the points of discontinuity at t = 0,±0.5 .

Problem 11 (Orthogonality.)

(i) In order to find an orthormal basis, we follow the Gram-Schmidt algorithm. Since we have four

vectors, we will have at most four basis vectors. Lets call them β̂1, β̂2, β̂3 , and β̂4 .

β̂1 =
−→v1

‖−→v1‖
=

−→v1√
46

= [0.1474 0.5898 0.2949 0 0.7372]⊤

β̂2 =
−→v2 − (−→v2

⊤β̂1)β̂1

‖−→v2 − (−→v2
⊤β̂1)β̂1‖

= [0.0130 − 0.6962 − 0.2733 0 0.6637]⊤
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β̂3 =
−→v3 − (−→v3

⊤β̂2)β̂2 − (−→v3
⊤β̂1)β̂1

‖−→v3 − (−→v3
⊤β̂2)β̂2 − (−→v3

⊤β̂1)β̂1‖
= [0.0090 0.4009 − 0.9151 0 0.0435]⊤

β̂4 =
−→v4 − (−→v4

⊤β̂3)β̂3 − (−→v4
⊤β̂2)β̂2 − (−→v4

⊤β̂1)β̂1

‖−→v4 − (−→v4
⊤β̂3)β̂3 − (−→v4

⊤β̂2)β̂2 − (−→v4
⊤β̂1)β̂1‖

= [0 0 0 0 0]⊤

Therefore, we have only three basis vectors for S (not surprising since −→v4 = −→v1 + 2−→v2 ).

(ii)

−→v1 = w11β̂1 + w12β̂2 + w13β̂3 = (−→v1
⊤β̂1)β̂1 + (−→v1

⊤β̂2)β̂2 + (−→v1
⊤β̂3)β̂3 =

√
46β̂1

−→v2 = w21β̂1 + w22β̂2 + w23β̂3 = (−→v2
⊤β̂1)β̂1 + (−→v2

⊤β̂2)β̂2 + (−→v2
⊤β̂3)β̂3 = 6.1926β̂1 + 6.6822β̂2

−→v3 = w31β̂1 + w32β̂2 + w33β̂3 = (−→v3
⊤β̂1)β̂1 + (−→v3

⊤β̂2)β̂2 + (−→v3
⊤β̂3)β̂3 = 12.0902β̂1 + 10.0461β̂2 + 9.6386β̂3

−→v4 = w41β̂1 + w42β̂2 + w43β̂3 = (−→v4
⊤β̂1)β̂1 + (−→v4

⊤β̂2)β̂2 + (−→v4
⊤β̂3)β̂3 = 19.1675β̂1 + 13.3645β̂2

Note: the answer to this problem is not unique. However, all answers must satisfy the following:

β̂⊤
i β̂j = δ[i − j] i, j = 1, 2, 3

−→vi − wi1β̂1 + wi2β̂2 + wi3β̂3 = 0 i = 1, 2, 3, 4

Also, if you are using matlab, you probably won’t be getting the answers to be exactly what you expect
due to finite precision.

Problem 12 (Projections.)

(i) All vectors in S
⊥ must be orthogonal to every vector in S :

−→x ∈ S
⊥ ⇔ −→x ⊤β̂i = 0 ∀i=1,2,3

Since S has rank 3 , then the rank of S
⊥ is 5 − 3 = 2 . Therefore, we need to find two basis vectors α̂1

and α̂2 . If we take any random vector −→y and project it onto S to get
−→̂
y , then we know that the error

vector −→y −−→̂
y will be orthogonal to S (Orthogonality Principal). Since S is a “very thin slice” of R

5 ,
any vector we choose at random will most likely NOT be in S . Since we are going to do a projection

anyway, let’s choose
−→
b = [1 − 1 4 7 − 7]⊤ .

−→̂
b =

−→
b − (

−→
b ⊤β̂3)β̂3 − (

−→
b ⊤β̂2)β̂2 − (

−→
b ⊤β̂1)β̂1 = [−0.7568 − 0.8536 4.0569 0 − 6.7885]⊤

−→
be⊥S =

−→
b −

−→̂
b = [1.7568 − 0.1464 − 0.0569 7.0000 − 0.2115]⊤

⇒ α̂1 =

−→
be

‖−→be‖
= [0.2433 − 0.0203 − 0.0079 0.9693 − 0.0293]⊤
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In order to get the other basis vector α̂2 , we pick another random vector −→c = [1 2 3 5 40]⊤ . This

time however, we need to project −→c onto the space spanned by β̂1, β̂2, β̂3 and α̂1 .

α̂2 =
−→c − (−→c ⊤β̂3)β̂3 − (−→c ⊤β̂2)β̂2 − (−→c ⊤β̂1)β̂1 − (−→c ⊤α̂1)α̂1

‖−→c − (−→c ⊤β̂3)β̂3 − (−→c ⊤β̂2)β̂2 − (−→c ⊤β̂1)β̂1 − (−→c ⊤α̂1)α̂1‖
= [−0.9586 0.0799 0.0311 0.2460 0.1154]⊤

(ii) (see part (i))

(iii) (see part (i))

(iv) (see part (i)) The projection of
−→
b onto S

⊥ is simply the error vector:

−→
be = [1.7568 − .1464 − .0569 7.0000 − 0.2115]⊤
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