Homework 4

Due: Thursday, September 28, 2006, at 5pm Homework 4 GSI: Mark Johnson
(Submit your grades to ee120staff@gmail.com)
Reading OWN Chapter 3-4 (Fourier Representations.)
Practice Problems (Suggestions.) OWN 4.11, 4.12, 4.19

Problem 1 (Properties of the CTFS.)
OWN Problem 3.46, all parts (details below). For Part (a), start out by showing (in 3 lines at most!) that

$$
\begin{align*}
Z[k] & =\frac{1}{T} \int_{T} z(t) e^{-j k \omega_{0} t} d t \tag{1}\\
& =\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} X[n] Y[m]\left(\frac{1}{T} \int_{T} e^{j(n+m-k) \omega_{0} t} d t\right) \tag{2}
\end{align*}
$$

In this case, do not worry about shifting around infinite sums. Then, evaluate the integral to obtain

$$
\begin{equation*}
Z[k]=\sum_{n=-\infty}^{\infty} X[n] Y[k-n] . \tag{3}
\end{equation*}
$$

Then, do Part (b), but only for Figure P3.46(a)
Finally, do Part (c).

Problem 2 (Properties of the DTFS.)
(a) OWN Problem 3.48, Part (a)
(b) OWN Problem 3.48, Part (e)

Problem 3 (Properties of the DTFS.)
(a) OWN Problem 3.48, Part (f)
(b) OWN Problem 3.48, Part (h)

Problem 4 (FT.)
(a) OWN Problem 4.22, Part (e)
(b) OWN Problem 4.23, Parts (a) and (b)

Problem 5 (FT.)
(a) OWN Problem 4.29, only for the signal $x_{a}(t)$ and $x_{c}(t)$
(b) OWN Problem 4.41

Problem 6 (FT.)
OWN 4.36 (all parts)

Problem 7 (Frequency response of linear time-invariant systems.)
Let a system be specified by a differential (or difference) equation. Then, its frequency response can be found easily, as you will establish in this homework problem.
(a) In the continuous-time case, suppose that the LTI system is specified by

$$
\begin{equation*}
\sum_{k=0}^{N} a_{k} \frac{d^{k}}{d t^{k}} y(t)=\sum_{m=0}^{M} b_{m} \frac{d^{m}}{d t^{m}} x(t) \tag{4}
\end{equation*}
$$

Solve the differential equation for the input $x(t)=e^{j \omega t}$. As we have seen in class, if the input to a continuous-time LTI system is $x(t)=e^{j \omega t}$, then the output can be expressed as $y(t)=H(j \omega) e^{j \omega t}$. Plug this into the above differential equation to determine $H(j \omega)$. You will obtain an expression for $H(j \omega)$ in terms of the coefficients $a_{k}, k=0, \ldots, N$ and $b_{m}, m=0, \ldots, M$.
(b) In the discrete-time case, suppose that the LTI system is specified by

$$
\begin{equation*}
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{m=0}^{M} b_{m} x[n-m] \tag{5}
\end{equation*}
$$

Solve the differential equation for the input $x[n]=e^{j \omega n}$. As we have seen in class, if the input to a discrete-time LTI system is $x[n]=e^{j \omega n}$, then the output can be expressed as $y[n]=H\left(e^{j \omega}\right) e^{j \omega n}$. Plug this into the above differential equation to determine $H\left(e^{j \omega}\right)$. You will obtain an expression for $H\left(e^{j \omega}\right)$ in terms of the coefficients $a_{k}, k=0, \ldots, N$ and $b_{m}, m=0, \ldots, M$.

Problem 8 (Frequency response of linear time-invariant systems (continued).)
(a) For the system specified by the differential equation, i.e.,

$$
\begin{equation*}
2 \frac{d y(t)}{d t}+6 y(t)=x(t) \tag{6}
\end{equation*}
$$

determine the frequency response $H(j \omega)$, and the corresponding impulse response $h(t)$. Then, find the output when the input is $x(t)=\sin (t / 4)$. Hint: Write $\sin (t / 4)$ in terms of functions of the form $e^{j \omega_{0} t}$, and recall from class that for such inputs, the output is imply given by $y(t)=H\left(j \omega_{0}\right) x(t)$.
(b) Draw a block diagram (involving only unit time delays, additions, and multiplications by constant factors) of the discrete-time LTI system characterized by the following frequency response:

$$
\begin{equation*}
H\left(e^{j \omega}\right)=\frac{1+2 e^{-j \omega}-3 e^{-2 j \omega}+e^{-3 j \omega}}{2+3 e^{-j \omega}-5 e^{-2 j \omega}+7 e^{-3 j \omega}-9 e^{-4 j \omega}} \tag{7}
\end{equation*}
$$

Try using as few delay elements as possible. (Recall that delay elements are memory, and hence somewhat expensive.) Hint: Determine the difference equation of the system.

