Homework 4 Solution

Due: Thursday, September 28, 2006, at 5pm

(Submit your grades to ee120staff@gmail.com)

Problem 1 (Properties of the CTFS.)
Note: the homework uses the notation $Z[k]$ to refer to the Fourier series coefficients c_{k} corresponding to $z(t)$.

- 3.46(a)

$$
\begin{aligned}
c_{k} & =\frac{1}{T} \int_{T} z(t) e^{-j k \omega_{0} t} d t \\
& =\frac{1}{T} \int_{T}\left(\sum_{n=-\infty}^{\infty} a_{n} e^{j n \omega_{0} t}\right)\left(\sum_{m=-\infty}^{\infty} b_{m} e^{j m \omega_{0} t}\right) e^{-j k \omega_{0} t} d t \\
& =\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} a_{n} b_{m}\left(\frac{1}{T} \int_{T} e^{j(n+m-k) \omega_{0} t} d t\right)
\end{aligned}
$$

For fixed values of k and n, if $m=k-n$, then

$$
\frac{1}{T} \int_{T} e^{j(n+m-k) \omega_{0} t} d t=\frac{1}{T} \int_{T} d t=1
$$

If $m \neq k-n$, then set $\ell=n+m-k$ and note that

$$
\frac{1}{T} \int_{T} e^{j(n+m-k) \omega_{0} t} d t=\frac{1}{T} \int_{T} e^{j \ell(2 \pi / T) t} d t=\frac{1}{j \ell 2 \pi}\left[e^{j \ell(2 \pi / T) t}\right]_{t=0}^{T}=\frac{1}{j \ell 2 \pi}(1-1)=0
$$

Thus, we see that

$$
c_{k}=\sum_{n=-\infty}^{\infty} a_{n} b_{k-n}
$$

- 3.46(b) The signal in Figure P3.46(a) has a fundamental period of $T=3$, and $\omega_{0}=\frac{2 \pi}{3}$.

We can observe that $x_{1}(t)=x(t) y(t)$, where $x(t)=\cos (20 \pi t)$ and $y(t)$ is a periodic square wave.

$$
x(t)=\cos (20 \pi t)=\frac{1}{2} e^{j 20 \pi t}+\frac{1}{2} e^{-j 20 \pi t}=\frac{1}{2} e^{j 30 \omega_{0} t}+\frac{1}{2} e^{-j 30 \omega_{0} t}
$$

This means that $a_{30}=a_{-30}=\frac{1}{2}$ and $a_{k}=0$ for all other k. We can write this as $a_{k}=\frac{1}{2} \delta(k-30)+\frac{1}{2} \delta(k+30)$.
By looking at Example 3.5 on page 193 of OWN, we see that the Fourier series coefficients b_{k} corresponding to $y(t)$ are given by $b_{0}=\frac{2}{3}$ and $b_{k}=\frac{\sin \left(k \omega_{0}\right)}{k \pi}$ when $k \neq 0$. Applying the convolution formula from part $3.46(a)$, we find that

$$
\begin{gathered}
c_{k}=\frac{\sin ((k-30) 2 \pi / 3)}{2(k-30) \pi}+\frac{\sin ((k+30) 2 \pi / 3)}{2(k+30) \pi} \quad k \neq 30,-30 \\
c_{30}=c_{-30}=\frac{1}{3}
\end{gathered}
$$

- 3.46(c) Suppose that $y(t)=x^{*}(t)$. Then $z(t)=x(t) y(t)=|x(t)|^{2}$. From problem 3.42(a) (Problem 4 of Homework 3), we know that $b_{k}=a_{-k}^{*}$. Using 3.46(a), we find that

$$
c_{k}=\sum_{n=-\infty}^{\infty} a_{n} b_{k-n}=\sum_{n=-\infty}^{\infty} a_{n} a_{n-k}^{*}
$$

From the Fourier representation of $z(t)$, we have

$$
c_{k}=\frac{1}{T} \int_{0}^{T}|x(t)|^{2} e^{-j \omega_{0} k t} d t=\sum_{n=-\infty}^{\infty} a_{n} a_{n-k}^{*}
$$

Evaluating this equation at $k=0$, we get

$$
\frac{1}{T} \int_{0}^{T}|x(t)|^{2} d t=\sum_{n=-\infty}^{\infty}\left|a_{n}\right|^{2}
$$

Problem 2 (Properties of the DTFS.)

- (a) OWN 3.48(a). The Fourier series coefficients of $x\left[n-n_{0}\right]$ can be written as

$$
\begin{aligned}
\hat{a}_{k} & =\frac{1}{N} \sum_{n=\langle N\rangle} x\left[n-n_{0}\right] e^{-j 2 \pi n k / N} \\
& =\frac{1}{N} e^{-j 2 \pi n_{0} k / N} \sum_{n=\langle N\rangle} x\left[n-n_{0}\right] e^{-j 2 \pi\left(n-n_{0}\right) k / N} \\
& =e^{-j 2 \pi n_{0} k / N} \frac{1}{N} \sum_{m=\langle N\rangle} x[m] e^{-j 2 \pi(m) k / N} \\
& =e^{-j 2 \pi n_{0} k / N} a_{k}
\end{aligned}
$$

- b OWN3.48(e). The Fourier series coefficients of $x^{*}[-n]$ are given by

$$
\begin{aligned}
\hat{a}_{k} & =\frac{1}{N} \sum_{n=\langle N\rangle} x^{*}[-n] e^{-j 2 \pi n k / N} \\
& =\left(\sum_{n=\langle N\rangle} x[-n] e^{j 2 \pi n k / N}\right)^{*} \\
& =\left(\sum_{m=\langle N\rangle} x[m] e^{-j 2 \pi m k / N}\right)^{*} \\
& =a_{k}^{*}
\end{aligned}
$$

Problem 3 (Properties of the DTFS.)

- (a) OWN 3.48(f). We first observe that when N is even,

$$
\left.(-1)^{n} x[n]=e^{j \pi n} x[n]=e^{j(N / 2)(2 \pi / N) n} x[n]\right)
$$

Now, we can apply the frequency shifting property of the DTFS from Table 3.2, and we see that the Fourier series coefficients of $(-1)^{n} x[n]$ are given by

$$
\hat{a}_{k}=a_{k-N / 2}
$$

- (b) OWN 3.48(h). We can write $y[n]$ as

$$
y[n]=\frac{1}{2} x[n]+\frac{1}{2}(-1)^{n} x[n]
$$

To solve this problem, we must consider two separate cases, when N is even and when N is odd. Case 1: If N is even, then $(-1)^{n} x[n]$ also has period N. Using the result from 3.48(e), we know that the Fourier series coefficients of $(-1)^{n} x[n]$ are given by

$$
b_{k}=a_{k-N / 2}
$$

Finally, using the linearity of the DTFS, the Fourier series coefficients of $y[n]$ are given by

$$
\hat{a}_{k}=\frac{1}{2}\left(a_{k}+a_{k-N / 2}\right)
$$

Case 2: If N is odd, on the other hand, then $(-1)^{n} x[n]$ will have period $2 N$. The Fourier series coefficients of $(-1)^{n} x[n]$ can be found as

$$
\begin{aligned}
b_{k} & =\frac{1}{2 N} \sum_{n=\langle 2 N\rangle} e^{j \pi n} x[n] e^{-j k 2 \pi /(2 N) n} \\
& =\frac{1}{2} \frac{1}{N} \sum_{n=1}^{2 N} x[n] e^{-j 2 \pi n((k-N) / 2) / N} \\
& =\frac{1}{2} \frac{1}{N} \sum_{n=1}^{N} x[n]\left(e^{-j 2 \pi n((k-N) / 2) / N}+e^{-j 2 \pi(n+N)((k-N) / 2) / N}\right) \\
& =\frac{1}{2} \frac{1}{N} \sum_{n=1}^{N} x[n]\left(e^{-j 2 \pi n((k-N) / 2) / N}+e^{-j 2 \pi n((k-N) / 2) / N} e^{-j 2 \pi((k-N) / 2)}\right)
\end{aligned}
$$

In the last step, we have used the fact that the period of $x[n]$ is N.
If k is odd, then $k-N$ is even and $(k-N) / 2$ is an integer. This means that

$$
e^{-j 2 \pi((k-N) / 2)}=1
$$

and that b_{k} is given by

$$
b_{k}=\frac{1}{2} \frac{1}{N} \sum_{n=1}^{N} x[n]\left(2 e^{-j 2 \pi n((k-N) / 2) / N}\right)=a_{(k-N) / 2}
$$

If k is even, then $k-N$ is odd, which means that

$$
e^{-j 2 \pi((k-N) / 2)}=-1
$$

and we see that $b_{k}=0$
Finally, using the linearity of the DTFS, the Fourier series coefficients of $y[n]$ are given by

$$
\hat{a}_{k}=\left\{\begin{array}{cc}
\frac{1}{2}\left(a_{k}+a_{(k-N) / 2}\right) & k \text { odd } \\
\frac{1}{2} a_{k} & k \text { even }
\end{array}\right.
$$

Problem 4 (FT.)

- (a) OWN 4.22(e)

$$
\begin{aligned}
& x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \\
& =\frac{1}{2 \pi}\left(\int_{-3}^{-2}-e^{j \omega t} d \omega+\int_{-2}^{-1}(\omega+1) e^{j \omega t} d \omega+\int_{1}^{2}(\omega-1) e^{j \omega t} d \omega+\int_{2}^{3} e^{j \omega t} d \omega\right) \\
& \int_{-3}^{-2}-e^{j \omega t} d \omega=\left[\frac{-1}{j t} e^{j \omega t}\right]_{\omega=-3}^{-2} \\
& =-\frac{1}{j t} e^{-j 2 t}+\frac{1}{j t} e^{-j 3 t} \\
& \int_{-2}^{-1}(\omega+1) e^{j \omega t} d \omega=\left[(\omega+1) \frac{1}{j t} e^{j \omega t}\right]_{\omega=-2}^{-1}-\int_{-2}^{-1} \frac{1}{j t} e^{j \omega t} d \omega \\
& =0+\frac{1}{j t} e^{-j 2 t}+\left[\frac{1}{t^{2}} e^{j \omega t}\right]_{\omega=-2}^{-1} \\
& =\frac{1}{j t} e^{-j 2 t}+\frac{1}{t^{2}} e^{-j t}-\frac{1}{t^{2}} e^{-j 2 t} \\
& \int_{1}^{2}(\omega-1) e^{j \omega t} d \omega=\left[(\omega-1) \frac{1}{j t} e^{j \omega t}\right]_{\omega=1}^{2}-\int_{1}^{2} \frac{1}{j t} e^{j \omega t} d \omega \\
& =\frac{1}{j t} e^{j 2 t}-0+\left[\frac{1}{t^{2}} e^{j \omega t}\right]_{\omega=1}^{2} \\
& =\frac{1}{j t} e^{j 2 t}+\frac{1}{t^{2}} e^{j 2 t}-\frac{1}{t^{2}} e^{j t} \\
& \int_{2}^{3} e^{j \omega t} d \omega=\left[\frac{1}{j t} e^{j \omega t}\right]_{\omega=2}^{3} \\
& =\frac{1}{j t} e^{j 3 t}-\frac{1}{j t} e^{j 2 t}
\end{aligned}
$$

$$
\begin{aligned}
x(t) & =\frac{1}{j 2 \pi t} e^{-j 3 t}+\frac{1}{j 2 \pi t} e^{j 3 t}+\frac{1}{2 \pi t^{2}} e^{-j t}-\frac{1}{2 \pi t^{2}} e^{j t}-\frac{1}{2 \pi t^{2}} e^{-j 2 t}+\frac{1}{2 \pi t^{2}} e^{j 2 t} \\
& =\frac{\cos (3 t)}{j \pi t}+\frac{\sin (t)}{j \pi t^{2}}-\frac{\sin (2 t)}{j \pi t^{2}}
\end{aligned}
$$

- (b)

OWN 4.23(a) For the given signal $x_{0}(t)$, the Fourier transform is given by

$$
\begin{aligned}
X_{0}(j \omega) & =\int_{0}^{1} e^{-t} e^{-j \omega t} d t \\
& =\int_{0}^{1} e^{-(1+j \omega) t} d t \\
& =\left[\frac{-1}{1+j \omega} e^{-(1+j \omega) t}\right]_{t=0}^{1} \\
& =\frac{1-e^{-(1+j \omega)}}{1+j \omega}
\end{aligned}
$$

We know that $x_{1} t=x_{0} t+x_{0}(-t)$. Using the linearity and time reversal properties of the Fourier transform, we have

$$
\begin{aligned}
X_{1}(j \omega) & =X_{0}(j \omega)+X_{0}(-j \omega) \\
& =\frac{1-e^{-(1+j \omega)}}{1+j \omega}+\frac{1-e^{-(1-j \omega)}}{1-j \omega} \\
& =\frac{\left(1-e^{-(1+j \omega)}\right)(1-j \omega)+\left(1-e^{-(1-j \omega)}\right)(1+j \omega)}{1+\omega^{2}} \\
& =\frac{1-e^{-1} e^{-j \omega}-j \omega+j \omega e^{-1} e^{-j \omega}+1-e^{-1} e^{j \omega}+j \omega-j \omega e^{-1} e^{j \omega}}{1+\omega^{2}} \\
& =\frac{2-2 e^{-1} \cos (\omega)+2 \omega e^{-1} \sin (\omega)}{1+\omega^{2}}
\end{aligned}
$$

OWN 4.23(b) We know that $x_{2}(t)=x_{0}(t)-x_{0}(-t)$. Using the linearity and time reversal properties of the Fourier transform, we have

$$
\begin{aligned}
X_{2}(j \omega) & =X_{0}(j \omega)-X_{0}(-j \omega) \\
& =\frac{1-e^{-(1+j \omega)}}{1+j \omega}-\frac{1-e^{-(1-j \omega)}}{1-j \omega} \\
& =\frac{\left(1-e^{-(1+j \omega)}\right)(1-j \omega)-\left(1-e^{-(1-j \omega)}\right)(1+j \omega)}{1+\omega^{2}} \\
& =\frac{1-e^{-1} e^{-j \omega}-j \omega+j \omega e^{-1} e^{-j \omega}-1+e^{-1} e^{j \omega}-j \omega+j \omega e^{-1} e^{j \omega}}{1+\omega^{2}} \\
& =\frac{2 j e^{-1} \sin \omega-2 j \omega+2 j \omega e^{-1} \cos (\omega)}{1+\omega^{2}} \\
& =j\left[\frac{-2 \omega+2 e^{-1} \sin (\omega)+2 \omega e^{-1} \cos (\omega)}{1+\omega^{2}}\right]
\end{aligned}
$$

Problem 5 (FT.)

- (a) OWN 4.29, only signals $x_{a}(t)$ and $x_{c}(t)$

We can express the Fourier transform of $x_{a}(t)$ as

$$
\begin{aligned}
X_{a}(j \omega) & =\left|X_{a}(j \omega)\right| e^{j \angle X_{a}(j \omega)} \\
& =|X(j \omega)| e^{j(\angle X(j \omega)-a \omega)} \\
& =|X(j \omega)| e^{j \angle X(j \omega)-j a \omega)} \\
& =X(j \omega) e^{-j a \omega}
\end{aligned}
$$

Using the time shifting property in Table 4.1, we see that $x_{a}(t)=x(t-a)$.
Similarly, we can express the Fourier transform of $x_{c}(t)$ as

$$
\begin{aligned}
X_{c}(j \omega) & =\left|X_{c}(j \omega)\right| e^{j \angle X_{c}(j \omega)} \\
& =|X(j \omega)| e^{-j \angle X(j \omega)} \\
& =X^{*}(j \omega)
\end{aligned}
$$

Using the conjugation and time reversal properties in Table 4.1, we see that $x_{c}(t)=x^{*}(-t)$.

- (d) OWN 4.41

OWN 4.41(a)

$$
\begin{aligned}
g(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{2 \pi}[X(j \omega) \star Y(j \omega)] e^{j \omega t} d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{2 \pi}\left[\int_{-\infty}^{\infty} X(j \theta) Y(j(\omega-\theta)) d \theta\right] e^{j \omega t} d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \theta)\left[\frac{1}{2 \pi} \int_{-\infty}^{\infty} Y(j(\omega-\theta)) e^{j \omega t} d \omega\right] d \theta
\end{aligned}
$$

OWN 4.41(b) Using the frequency shifting property in Table 4.1, we see that the inverse Fourier transform of $Y(j(\omega-\theta))$ is $e^{j \theta t} y(t)$. This means that

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} Y(j(\omega-\theta)) e^{j \omega t} d \omega=e^{j \theta t} y(t)
$$

OWN 4.41(c) Combining the results from parts (a) and (b), we have

$$
\begin{aligned}
g(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \theta) e^{j \theta t} y(t) d \theta \\
& =y(t) \frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \theta) e^{j \theta t} d t \\
& =y(t) x(t)
\end{aligned}
$$

Problem 6 (FT.)

- (a) Using the third to last entry in table 4.2, the frequency response is

$$
\begin{aligned}
H(j \omega) & =\frac{Y(j \omega)}{X(j \omega)} \\
& =2 \frac{\frac{1}{1+j \omega}-\frac{1}{4+j \omega}}{\frac{1}{1+j \omega}+\frac{1}{3+j \omega}} \\
& =2 \frac{(4+j \omega)(3+j \omega)-(1+j \omega)(3+j \omega)}{(4+j \omega)(3+j \omega)+(4+j \omega)(1+j \omega)} \\
& =2 \frac{(3+j \omega)(4+j \omega-1-j \omega)}{(4+j \omega)(3+j \omega+1+j \omega)} \\
& =\frac{3(3+j \omega)}{(4+j \omega)(2+j \omega)}
\end{aligned}
$$

- (b) First, we take a partial fraction expansion of $H(j \omega)$

$$
\begin{gathered}
H(j \omega)=\frac{3(3+j \omega)}{(4+j \omega)(2+j \omega)}=\frac{A}{4+j \omega}+\frac{B}{2+j \omega} \\
3(3+j \omega)=A(2+j \omega)+B(4+j \omega)
\end{gathered}
$$

Setting $\omega=-2 / j$, we find that $B=3 / 2$. Setting $\omega=-4 / j$, we find that $A=3 / 2$. Using the same entry of Table 4.2 , we find that the inverse Fourier transform of $H(j \omega)$ is

$$
h(t)=\frac{3}{2}\left(e^{-4 t}+e^{-2 t}\right) u(t)
$$

- (c) From part (a), we have

$$
\frac{Y(j \omega)}{X(j \omega)}=\frac{9+3 j \omega}{8+6 j \omega+(j \omega)^{2}}
$$

Cross multiplying and taking the inverse Fourier transform, we find that

$$
\frac{d^{2} y(t)}{d t^{2}}+6 \frac{d y(t)}{d t}+8 y(t)=3 \frac{d x(t)}{d t}+9 x(t)
$$

Problem 7 (Frequency response of linear time-invariant systems.)

- (a)

We are given the equation

$$
\sum_{k=0}^{N} a_{k} \frac{d^{k}}{d t^{k}} y(t)=\sum_{m=0}^{M} b_{m} \frac{d^{m}}{d t^{m}} x(t)
$$

and we will substitute in $x(t)=e^{j \omega t}$ and $y(t)=H(j \omega) e^{j \omega t}$. First, note that

$$
\frac{d}{d t} e^{j \omega t}=j \omega e^{j \omega t}
$$

which generalizes to

$$
\frac{d^{k}}{d t^{k}} e^{j \omega t}=(j \omega)^{k} e^{j \omega t}
$$

We find that

$$
\begin{aligned}
& \sum_{k=0}^{N} a_{k} H(j \omega)(j \omega)^{k} e^{j \omega t}=\sum_{m=0}^{M} b_{m}(j \omega)^{m} e^{j \omega t} \\
& \sum_{k=0}^{N} a_{k} H(j \omega)(j \omega)^{k}=\sum_{m=0}^{M} b_{m}(j \omega)^{m} \\
& H(j \omega)=\frac{\sum_{m=0}^{M} b_{m}(j \omega)^{m}}{\sum_{k=0}^{N} a_{k}(j \omega)^{k}}
\end{aligned}
$$

- (b)

We are given the equation

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{m=0}^{M} b_{m} x[n-m]
$$

and we will substitute in $x[n]=e^{j \omega n}$ and $y[n]=H\left(e^{j \omega}\right) e^{j \omega n}$.

$$
\begin{aligned}
\sum_{k=0}^{N} a_{k} H\left(e^{j \omega}\right) e^{j \omega(n-k)} & =\sum_{m=0}^{M} b_{m} e^{j \omega(n-m)} \\
e^{j \omega n} \sum_{k=0}^{N} a_{k} H\left(e^{j \omega}\right) e^{-j \omega k} & =e^{j \omega n} \sum_{m=0}^{M} b_{m} e^{-j \omega m} \\
H\left(e^{j \omega}\right) & =\frac{\sum_{m=0}^{M} b_{m} e^{-j \omega m}}{\sum_{k=0}^{N} a_{k} e^{-j \omega k}}
\end{aligned}
$$

Problem 8 (Frequency response of linear time-invariant systems (continued).)

- (a)

Using the result from part (a), we see that for this equation $N=1, a_{1}=2, a_{0}=6, M=0$, and $b_{0}=1$. The frequency response is given by

$$
H(j \omega)=\frac{1}{6+2 j \omega}=\frac{0.5}{3+j \omega}
$$

The impulse response can be found by using the basic transform pairs in table 4.2

$$
h(t)=\frac{1}{2} e^{-3 t} u(t)
$$

When the input is

$$
x(t)=\sin (t / 4)=\frac{1}{2 j}\left[e^{j t / 4}-e^{-j t / 4}\right]
$$

then the output is given by

$$
\begin{aligned}
y(t) & =\frac{1}{2 j}\left[H(j(1 / 4)) e^{j(1 / 4) t}-H(j(-1 / 4)) e^{j(-1 / 4) t}\right] \\
& =\frac{1}{2 j}\left[\frac{1}{6+j 0.5} e^{j(1 / 4) t}-\frac{1}{6-j 0.5} e^{j(-1 / 4) t}\right]
\end{aligned}
$$

Now, we write $\frac{1}{6+j 0.5}=r e^{j \theta}$, where $r=\frac{1}{\sqrt{36.25}}$ and $\theta=-\arctan (1 / 12)$

$$
\begin{aligned}
y(t) & =\frac{1}{2 j}\left[r e^{j \theta} e^{j(1 / 4) t}-r e^{-j \theta} e^{j(-1 / 4) t}\right] \\
& =\frac{1}{2 j}\left[r e^{j(t / 4+\theta)}-r e^{-j(t / 4+\theta)}\right] \\
& =r \sin (t / 4+\theta)
\end{aligned}
$$

- (b)

$$
\begin{gathered}
H\left(e^{j \omega}\right)=\frac{Y\left(e^{j \omega}\right)}{X\left(e^{j \omega}\right)}=\frac{1+2 e^{-j \omega}-3 e^{-2 j \omega}+e^{-3 j \omega}}{2+3 e^{-j \omega}-5 e^{-2 j \omega}+7 e^{-3 j \omega}-9 e^{-4 j \omega}} \\
Y\left(e^{j \omega}\right)\left(2+3 e^{-j \omega}-5 e^{-2 j \omega}+7 e^{-3 j \omega}-9 e^{-4 j \omega}\right)=X\left(e^{j \omega}\right)\left(1+2 e^{-j \omega}-3 e^{-2 j \omega}+e^{-3 j \omega}\right) \\
2 y[n]+3 y[n-1]-5 y[n-2]+7 y[n-3]-9 y[n-4]=x[n]+2 x[n-1]-3 x[n-2]+x[n-3] \\
y[n]=0.5 x[n]+x[n-1]-1.5 x[n-2]+0.5 x[n-3]-1.5 y[n-1]+2.5 y[n-2]-3.5 y[n-3]+4.5 y[n-4]
\end{gathered}
$$

This system can be implemented using 7 delay elements. See the block diagram at the top of the following figure.
Optional: The system can actually be implemented with only 4 delay elements using the Direct Form II structure. See the bottom block diagram in the following figure.

