
EECS 120 Signals & Systems University of California, Berkeley: Fall 2006
Ramchandran October 5, 2006

Homework 6
Due: Thursday, October 12, 2006, at 5pm

Homework 6 GSI: June Wang

Reading OWN Chapter 7.

Practice Problems (Suggestions.) OWN 7.6, 7.7, 7.19.

Problem 1 (DTFT.)

X(ejω) is the Fourier transform of x[n] and is as depicted below

We also have p[n] = cos πn− cos(πn/2) . Please sketch the Fourier transform of w[n] = x[n]p[n] .

Problem 2 (Sampling theorem.)

OWN Problem 7.21, Parts (a), (b), (d), (g)

Problem 3 (Sampling.)

OWN Problem 7.23, all parts.

Problem 4 (Discrete-time Processing of Continuous-time Signals.)

OWN Problem 7.29

Problem 5 (Discrete-time Processing of Continuous-time Signals.)

OWN Problem 7.30
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Problem 6 (Band-pass Sampling.)

Suppose a continuous-time signal x(t) has the spectrum shown in Figure 1. Such a signal is sometimes
called a band-pass signal. The Nyquist rate (that is, the smallest sampling rate that avoids aliasing) for
this signal is 6π , since the highest occupied frequency is 3π .

The spectral support of a band-pass signal is the amount of spectrum it uses. For the example given in
Figure 1, the spectral support is π .1 Clearly, the number of degrees of freedom of the signal is determined
by the spectral support, rather than by the highest occupied frequency. So, the intuition is that the signal
can be sampled at a rate equal twice its spectral support, which for the example shown in Figure 1 is
2π . This is true, but generally requires non-uniform sampling and involves certain forms of aliasing
(overlapping replica of the original spectum), thus requiring involved reconstruction procedures.

For some lucky instances of band-pass signals, however, one can just go ahead and sample them at a
sampling frequency equal to twice the spectral support. In this homework problem, we examine these
lucky cases.

(a) Show that for the example given in Figure 1, it is true that sampling at ωs = 2π enables perfect
reconstruction. Hint: Draw the spectrum of the sampled signal.
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Figure 1: The spectrum for Problem 1, Part (a).

(b) Consider the signal whose spectrum is shown in Figure 2. This is the exact same figure as Figure 1,
except that the two triangles are moved π/4 closer to the origin. What is the Nyquist sampling rate in this
case? The spectral support is unchanged, but show that it is not true that this signal can be uniformly
sampled at ωs = 2π without introducing aliasing. We could sample it at the Nyquist frequency, but
it can be shown that a smaller sampling frequency is already sufficient. What is the smallest sampling
frequency that avoids aliasing? Hint: Draw again the spectrum of the sampled signal.
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Figure 2: The spectrum for Problem 1, Part (b).

(c) Consider a general band-pass signal with spectral support from ω1 to ω2 (where ω1 < ω2 , of
course). This means that the spectrum of the signal is non-zero only between ω1 ≤ |ω| ≤ ω2 . What is
the condition on ω1 and ω2 such that the signal can be sampled at the frequency corresponding to the
actual spectral support, i.e., at ωs = 2(ω2 − ω1) ?

(d) Suppose that you are allowed to process the continuous-time band-pass signal (using a suitable
continuous-time system) before sampling it. Show that in this case, it is always possible to sample the
signal at a sampling frequency equal to twice its spectral support.

1Since most interesting signals are real-valued, and hence their spectra conjugate symmetric, the spectral support is
usually given for the positive frequencies only.
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Remark: Band-pass sampling is quite an interesting tool in digital communications. Suppose that the
incoming continuous-time signal is at 1900MHz (the GSM band in the United States), but its spectral
support is very small (it may be a speech signal with a spectral support of less than 50kHz ). Hence,
instead of demodulating the signal in the continuous time domain, requiring expensive local oscillators,
one can potentially sample it at a very low rate, corresponding to the spectral support (for the speech
example, sampling at 100kHz may be enough, as we have shown in this problem). Clearly, this is a very
attractive system design. The downside is that the implementation of precise sampling devices is known
to be a rather challenging task.

Problem 7 (Understanding aliasing.)

First, note that the signal
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has Fourier transform

X(jω) =
{
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which is bandlimited with one sided bandwidth ωM = W
2 . From the sampling theorem we know that if

the signal is sampled with sampling interval T satisfying 2π
T > W , then we can reconstruct x(t) perfectly.

For this problem, pick W = 8 . If the sampling interval is T = 0.5 we would have perfect reconstruction,
while with T = 2 we should expect to see aliasing.

Using Matlab:

On the parts of this problem that involve multiplication by impulses or time/frequency conversions, don’t
worry too much about getting the scale on the y-axis exactly right. The scale of the independent variable
( t or ω ) is very important, however.

(a) Plot x(t) over −10 < t < 10 . Also plot X(jω) .

(b) For T = 0.5 , plot xp(t) , the result of multiplying x(t) by an impulse train of period T. Be sure your
time axis is labeled correctly. Plot its Fourier transform. What is its period?

(c) Low pass filter xp(t) to retain only one period and plot the resulting time-domain waveform. You may
do this filtering in the frequency domain (multiply by a box function) or in the time domain (convolve
with a sinc).

(d) For T = 2 , plot xp(t) , the result of multiplying x(t) by an impulse train of period T. Be sure your
time axis is labeled correctly. Plot its Fourier transform. What is its period?

(e) Low pass filter xp(t) to retain only one period and plot the resulting time-domain waveform. You may
do this filtering in the frequency domain (multiply by a box function) or in the time domain (convolve
with a sinc). Don’t worry about getting the y-axis scaling exactly right.
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