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Homework 6 Solutions

Problem 1 (DTFT.)

To sketch W (ejω) , we use the multiplication property,

w[n] = x[n]p[n] ↔ W (ejω) =
1
2π

X(ejω) ∗ P (ejω)

X(ejω) is as shown and

P (ejω) = π

∞∑

l=−∞
(δ(ω − π − 2πl) + δ(ω + π − 2πl))− π

∞∑

l=−∞
(δ(ω − π

2
− 2πl) + δ(ω +

π

2
− 2πl))

The area under the impulses at ω = ±π ± 2πl is equal to 2π not just π because the impulses from the
term

∑∞
l=−∞(δ(ω − π − 2πl)) overlap with the impulse from the term

∑∞
l=−∞(δ(ω + π − 2πl)) due to

the 2π periodicity of DTFT.

These impulses and the impulses at ω = ±π
2 ± 2πl cause replicas of X(ejω) that are centered at these

frequencies. The result W (ejω) is shown below:

Problem 2 (Sampling theorem.)

• OWN 7.21(a)

The Nyquist rate for the given signal is 2× 5000π = 10000π . Therefore, to be able to recover x(t)
from xp(t) , the sampling period must be at most Tmax = (2π)/(10000π) = 2 × 10−4 sec. Since
the sampling period used is T = 10−4 < Tmax , x(t) can be recovered from xp(t)
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• OWN 7.21(b)

The Nyquist rate for the given signal is 2 × 15000π = 30000π . Therefore, to be able to recover
x(t) from xp(t) , the sampling period must be at most Tmax = (2π)/(30000π) = 0.66 × 10−4 sec.
Since the sampling period used is T = 10−4 > Tmax , x(t) cannot be recovered from xp(t)

• OWN 7.21(d)

Since x(t) is real, X(jω) is conjugate symmetric. Therefore if X(jω) = 0 for ω > 5000π ,
X(jω) = 0 for ω < −5000π . The answer to this part is identical to that of part (a).

• OWN 7.21(g)

If |X(jω)| = 0 for ω > 5000π , then X(jω) = 0 for ω > 5000π . However, the question gives
us no information about whether or not there exists some ωM such that X(jω) = 0 for ω <
−ωM . Therefore, we cannot determine whether we can recover x(t) from xp(t) . (Full credit given
for answering no, since you can construct an x(t) matching the given properties that cannot be
recovered from xp(t) .)

Problem 3 (Sampling.)

• OWN 7.23(a) We can express p(t) as p(t) = p1(t)− p1(t−∆) , where

p1(t) =
∞∑

n=−∞
δ(t− n(2∆))

Now, using Table 4.2, the Fourier transform of p1(t) is given by

P1(jω) =
π

∆

∞∑

k=−∞
δ

(
ω − πk

∆

)

To find the Fourier transform of q(t) = p1(t −∆) , we can find the Fourier series coefficients and
use equation 4.22 in OWN. The Fourier series coefficients are given by

ak =
1
T

∫

T

q(t)e−jk(2π/T )tdt =
1

2∆

∫ 2∆

0

δ(t−∆)e−jk(π/∆)tdt =
1

2∆
e−jkπ

Using equations 4.22 and 4.23, the Fourier transform of q(t) is given by

∞∑

k=−∞

π

∆
e−jkπδ

(
ω − πk

∆

)

Finally, using the linearity of the Fourier transform, we find that

P (jω) =
π

∆

∞∑

k=−∞
δ

(
ω − kπ

∆

)
− π

∆

∞∑

k=−∞
e−jkπδ

(
ω − kπ

∆

)
=

2π

∆

∑

k odd

δ

(
ω − πk

∆

)

Now, because xp(t) = x(t)p(t) , we know that Xp(jω) = 1
2π X(jω) ? P (jω)

Xp(jω) =
1
∆

∑

k odd

X

(
ω − kπ

∆

)

If ∆ < π/(2ωM ) , then ωM < π/(2∆) . In this situation, the various copies of X(jω) do not overlap
in Xp(jω) . P (jω) , Xp(jω) , and Y (jω) are shown in the following figure.
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• OWN 7.23(b)

To recover x(t) from xp(t) , we need to shift one copy of the original spectrum X(jω) to the
origin, and then filter out all of the other copies of X(jω) in Xp(jω) . One simple way to shift the
spectrum is to multiply xp(t) by cos(tπ/∆) . The following system will recover x(t) from xp(t)
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H1(jω) =
{

∆ |ω| < ωM

0 else

• OWN 7.23(c)

To recover x(t) from y(t) , we need to shift the two parts of X(jω) that are located near π/∆ and
−π/∆ back to the origin, and then filter out the components of the spectrum at higher frequencies.
The following system will recover x(t) from y(t)

H2(jω) =
{

2∆ |ω| < ωM

0 else

• OWN 7.23(d)

Looking at the plot of Xp(jω) in part (a), we see that aliasing is avoided when ωM ≤ π/∆.
Therefore, the maximum value of ∆ which allows x(t) to be recovered is ∆max = π/ωM

Problem 4 (Discrete-time Processing of Continuous-time Signals.)

OWN Problem 7.29

The outputs of each block of the overall system for filtering a continuous-time signal using a discrete-time
filter are given and plotted below. Note: Following OWN notation, in this problem we use Ω to denote
the frequency variable of the discrete-time signal.
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xp(t) = xc(t)p(t)

Xp(jω) =
1
T

∞∑

k=−∞
Xc(j(ω − 2πk

T
))

x[n] = xc(nT )

X(ejΩ) = Xp(j
Ω
T

)

y[n] = x[n] ∗ h[h]
Y (ejΩ) = X(ejΩ)H(ejΩ)

yp(t) =
∞∑

n=−∞
y[n]δ(t− nT )

Yp(jω) = Y (ejωT )
yc(t) = yp(t) ∗ h(t)

Yc(jω) = Yp(jω)H(jω)

Problem 5 (Discrete-time Processing of Continuous-time Signals.)

(a)

Compute Yc(jω) by taking the Fourier transform of both sides of the differential equation for the
continuous-time LTI system, then find yc(t) in OWN Table 4.2.

dyc(t)
dt

+ yc(t) = xc(t) = δ(t)

jωYc(jω) + Yc(jω) = Xc(jω) = 1

Yc(jω) =
1

1 + jω

yc(t) = e−tu(t)

(b)

y[n] = yc(nT ) = e−nT u[n]

Y (ejω) =
1

1− e−T e−jω

w[n] = δ[n]
W (ejω) = 1

H(ejω) =
W (ejω)
Y (ejω)

= 1− e−T e−jω

h[n] = δ[n]− e−T δ[n− 1]
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Figure 1: Problem 4.
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Problem 6(Band-pass Sampling.)

(a)

x(t) has Nyquist rate 6π . Sampling x(t) at frequency ωs = 2π produces

Xp(jω) =
∞∑

k=−∞
X(j(ω − 2πk)).

As we can see from the figure above, the shifted replicas of X(jω) do not overlap. Since there is no
aliasing, we can perfectly reconstruct x(t) by bandpass filtering the sampled signal with H(jω) .

(b)

x(t) has Nyquist rate 11π
2 . If we sample x(t) at frequency ωs = 2π , the shifted replicas of X(jω)

would overlap and we get aliasing, as seen in the figure below.

The smallest sampling frequency that avoids aliasing is ωs = 11π
4 . The sampled signal xp(t) has Fourier

transform shown in the figure below.
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(c)

For shifted replicas of X(jω) to be nonoverlapping, ω1 must be an integer multiple of the spectral
support,

ω1 = k(ω2 − ω1)

where k is a nonnegative integer.

(d)

If we preprocess the signal before sampling by making the bandpass signal into a lowpass signal, then we
can sample the lowpass signal at the Nyquist rate, which is twice the spectral support of the bandpass
signal. We can then recover the original bandpass signal with reconstruction and postprocessing. See the
figure below.

Problem 7 (Understanding aliasing.)

(a)
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(b)

(c)
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(d)

(e)
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