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Homework 6 Solutions

Problem 1 (DTFT.)
To sketch W (e*), we use the multiplication property,

wln] = alalpln] < W) = X (%) + P(e)

X (e7%) is as shown and
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The area under the impulses at w = +7 4+ 27l is equal to 27 not just m because the impulses from the
term » ,° _ (6(w — 7 — 27l)) overlap with the impulse from the term Y ,° _ (6(w + 7 — 27l)) due to
the 27 periodicity of DTFT.

These impulses and the impulses at w = 47 4= 27l cause replicas of X (e’*) that are centered at these
frequencies. The result W (e/*) is shown below:

W (&)

Problem 2 (Sampling theorem.)

o OWN 7.21(a)

The Nyquist rate for the given signal is 2 x 5000 = 100007 . Therefore, to be able to recover xz(t)
from z,(t), the sampling period must be at most Ty, = (27)/(100007) = 2 x 107* sec. Since
the sampling period used is T'=10"* < T},,42 , z(t) can be recovered from x,(t)



e OWN 7.21(b)

The Nyquist rate for the given signal is 2 x 150007 = 300007 . Therefore, to be able to recover
z(t) from m,(t), the sampling period must be at most Ty,q, = (2m)/(300007) = 0.66 x 10~* sec.
Since the sampling period used is 7' = 10"* > T4, , 2(t) cannot be recovered from (%)

e OWN 7.21(d)

Since z(t) is real, X(jw) is conjugate symmetric. Therefore if X(jw) = 0 for w > 50007,
X (jw) =0 for w < —50007. The answer to this part is identical to that of part (a).

e OWN 7.21(g)

If | X(jw)| =0 for w > 50007, then X (jw) = 0 for w > 50007 . However, the question gives
us no information about whether or not there exists some wys such that X(jw) = 0 for w <
—wps - Therefore, we cannot determine whether we can recover x(t) from z,(t). (Full credit given
for answering no, since you can construct an x(¢t) matching the given properties that cannot be
recovered from z,(t).)

Problem 3 (Sampling.)

e OWN 7.23(a) We can express p(t) as p(t) = p1(t) — p1(t — A), where

pi(t)= Y 8(t—n(24))

n=—oo

Now, using Table 4.2, the Fourier transform of p;(t) is given by

Plio) = T Y i(w-7)

To find the Fourier transform of ¢(t) = p1(t — A), we can find the Fourier series coefficients and
use equation 4.22 in OWN. The Fourier series coefficients are given by

4= L / g(tyeitCm /Mg - L / - 5t — A)e—Thm/Dtgy = L —jkm

Using equations 4.22 and 4.23, the Fourier transform of ¢(t) is given by
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k=—o0
Finally, using the linearity of the Fourier transform, we find that

=3 Z o) 5 8 ol 5) - E 5l )

k=—o0 k odd

Now, because z,(t) = z(t)p(t) , we know that X,(jw) = 5= X (jw) * P(jw)

XG0 =y 3 X (w—kg)

k odd

If A<7/(2wn), then wy < w/(2A). In this situation, the various copies of X (jw) do not overlap
in X,(jw). P(jw), Xp(jw), and Y (jw) are shown in the following figure.
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e OWN 7.23(b)

To recover z(t) from z,(t), we need to shift one copy of the original spectrum X (jw) to the
origin, and then filter out all of the other copies of X (jw) in X,(jw). One simple way to shift the
spectrum is to multiply x,(t) by cos(tm/A). The following system will recover z(t) from z,(t)



1,23 (b)

H‘( M X(t)
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Hy(jw) = { 0 | |else Y
o OWN 7.23(c)

To recover z(t) from y(t), we need to shift the two parts of X (jw) that are located near /A and
—m/A back to the origin, and then filter out the components of the spectrum at higher frequencies.
The following system will recover x(t) from y(t)

7.23 (©

y(t) —®Q— " X8
Cos(ll" t\
Hy(jw) { 2OA |w‘el<sfM

o OWN 7.23(d)

Looking at the plot of X,(jw) in part (a), we see that aliasing is avoided when wy < w/A.
Therefore, the maximum value of A which allows x(t) to be recovered is A4, = 7/wir

Problem 4 (Discrete-time Processing of Continuous-time Signals.)
OWN Problem 7.29

The outputs of each block of the overall system for filtering a continuous-time signal using a discrete-time
filter are given and plotted below. Note: Following OWN notation, in this problem we use {2 to denote
the frequency variable of the discrete-time signal.



Xii) = 7 3 Kbl Zh)
z[n] = z(nT)
j — (2
X@) = X
yln] = =[n]*h(h]
V() = X(HH(?)
v(t) = D ylnlo(t —nT)
Yp(jw) = Y(7)
ye(t) = yp(t) = h(t)
Ye(jw) = Y(jw)H(jw)

Problem 5 (Discrete-time Processing of Continuous-time Signals.)

(a)

Compute Y.(jw) by taking the Fourier transform of both sides of the differential equation for the
continuous-time LTT system, then find y.(¢) in OWN Table 4.2.

dy.(t)

dt + yc(t) = -Tc(t) = 5(t)
jwYe(jw) + Ye(jw) = Xe(jw) =1
YC(jW) = 1 —i—ljw

ye(t) = e u(t)
(b)
yln] = ye(nT) =e""uln]
Y(ej‘*’) - e*ITe*J’w
wln] 8[n]
W(ev) = 1
H() = I;I,/((:j:))
= 1—e Te v
hln] = 6[n]—e To[n—1]
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Figure 1: Problem 4.



Problem 6 (Band-pass Sampling.)
(a)

2(t) has Nyquist rate 67. Sampling z(¢) at frequency ws; = 2w produces

Xp(jw) = > X(j(w—27k)).

k=—o00
X(jo)
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As we can see from the figure above, the shifted replicas of X (jw) do not overlap. Since there is no
aliasing, we can perfectly reconstruct z(¢) by bandpass filtering the sampled signal with H(jw).

(b)
117

x(t) has Nyquist rate -5*. If we sample x(f) at frequency w, = 27, the shifted replicas of X(jw)
would overlap and we get aliasing, as seen in the figure below.

X ptje)

—3n —2T -7 T 2T 3%

The smallest sampling frequency that avoids aliasing is ws = 1% . The sampled signal zp(t) has Fourier

1
transform shown in the figure below.



X pljo)

(c)

For shifted replicas of X (jw) to be nonoverlapping, w; must be an integer multiple of the spectral

support,

where k is a nonnegative integer.

(d)

If we preprocess the signal before sampling by making the bandpass signal into a lowpass signal, then we
can sample the lowpass signal at the Nyquist rate, which is twice the spectral support of the bandpass
signal. We can then recover the original bandpass signal with reconstruction and postprocessing. See the

figure below.
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Problem 7 (Understanding aliasing.)
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(c)
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(d)

(¢)

X (i)
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