Homework 7 Solutions

Problem 1 (Downsampling.)
OWN Problem 7.35

- (a)

Figure 1: Problem 1 (a)

- (b)

Discrete-time impulse-train sampling of $x[n]$ generates the signal $x_{p}[n]$.

$$
\begin{aligned}
x_{p}[n] & = \begin{cases}x[n], & n=0, \pm 2, \pm 4, \ldots \\
0, & n= \pm 1, \pm 3, \ldots\end{cases} \\
& =\sum_{k=-\infty}^{\infty} x[2 k] \delta[n-2 k] \\
& =x[n] p[n] \\
P\left(e^{j \omega}\right) & =\pi \sum_{k=-\infty}^{\infty} \delta(\omega-\pi k) \\
X_{p}\left(e^{j \omega}\right) & =\frac{1}{2 \pi} \int_{2 \pi} P\left(e^{j \theta}\right) X\left(e^{j(\omega-\theta)}\right) d \theta \\
& =\frac{1}{2} \sum_{k=0}^{1} X\left(e^{j(\omega-\pi k)}\right)
\end{aligned}
$$

Decimation of $x[n]$ generates the signal $x_{d}[n]$.

$$
\begin{aligned}
x_{d}[n] & =x[2 n]=x_{p}[2 n] \\
X_{d}\left(e^{j \omega}\right) & =X_{p}\left(e^{j \frac{\omega}{2}}\right)
\end{aligned}
$$

Figure 2: Problem 1 (b)

Problem 2 (Upsampling.)
OWN Problem 7.49

- (a)

Let $x_{d_{1}}[n]$ and $x_{d_{2}}[n]$ be two inputs to the system, with corresponding outputs $x_{p_{1}}[n]$ and $x_{p_{2}}[n]$. Now, consider an input of the form $x_{d_{3}}[n]=\alpha_{1} x_{d_{1}}[n]+\alpha_{2} x_{d_{2}}[n]$. With this input, the output of the system will be

$$
x_{p_{3}}[n]=\left\{\begin{array}{cc}
\alpha_{1} x_{d_{1}}[n / N]+\alpha_{2} x_{d_{2}}[n / N] & n=0, \pm N, \pm 2 N, \ldots \\
0 & \text { else }
\end{array}\right.
$$

Thus, $x_{p_{3}}[n]=\alpha_{1} x_{p_{1}}[n]+\alpha_{2} x_{p_{2}}[n]$. This means that the system is linear.

- (b)

The system is not time invariant. For example, an input $\delta[n]$ gives an output $\delta[n]$, while an input $\delta[n-1]$ gives an output $\delta[n-N]$.

- (c)

$$
\begin{aligned}
X_{p}\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x_{p}[n] e^{j \omega n} \\
& =\sum_{k=-\infty}^{\infty} x_{p}[k N] e^{j \omega k N} \\
& =\sum_{k=-\infty}^{\infty} x_{d}[k] e^{j \omega k N} \\
& =X_{d}\left(e^{j \omega N}\right)
\end{aligned}
$$

The plot of $X_{p}\left(e^{j \omega}\right)$ is shown in the figure in part (d).

- (d)

The plot of $X\left(e^{j \omega}\right)$ is shown in the following figure.
7.49 (c) and (d)

Figure 3: Problem 2 (c) and (d)

Problem 3 (Zero-Order and First-Order Holds.)
OWN Problem 7.50

- (a)

$$
h_{0}[n]=\left\{\begin{array}{cc}
1 & n=0,1, \ldots, N-1 \\
0 & \text { else }
\end{array}\right.
$$

- (b)

The condition $\omega_{S}=\frac{2 \pi}{N}>2 \omega_{M}$ is equivalent to $\omega_{M}<\frac{\pi}{N}$. Because

$$
X_{p}\left(e^{j \omega}\right)=\frac{1}{N} \sum_{k=0}^{N-1} X\left(e^{j\left(\omega-k \omega_{S}\right)}\right)
$$

the signals $X\left(e^{j \omega}\right)$ and $X_{p}\left(e^{j \omega}\right)$ can be sketched as follows.

Figure 4: Problem 3 (b)
In order to perfectly recover $x[n]$, we require that

$$
H_{L}\left(e^{j \omega}\right)=H_{0}\left(e^{j \omega}\right) H\left(e^{j \omega}\right)=\left\{\begin{array}{cc}
N & |\omega|<\pi / N \\
0 & \text { else }
\end{array}\right.
$$

The frequency response of the ZOH is given by

$$
H_{0}\left(e^{j \omega}\right)=\sum_{n=0}^{N-1} e^{-j \omega n}=\frac{1-e^{-j \omega N}}{1-e^{-j \omega}}=e^{(-j \omega(N-1) / 2)} \cdot \frac{\sin (\omega N / 2)}{\sin (\omega / 2)}
$$

Therefore,

$$
H\left(e^{j \omega}\right)=\frac{H_{L}\left(e^{j \omega}\right)}{H_{0}\left(e^{j \omega}\right)}=\left\{\begin{array}{cc}
N e^{(j \omega(N-1) / 2)} \cdot \frac{\sin (\omega / 2)}{\sin (\omega N / 2)} & |\omega|<\pi / N \\
0 & \text { else }
\end{array}\right.
$$

A plot of $\left|H\left(e^{j \omega}\right)\right|$ for $N=2$ is given below.

Figure 5: Problem 3 (b)

- (c)

- (d)

First, we observe that $h_{1}[n]=\frac{1}{N} h_{0}[n] * h_{0}[-n]$. Therefore,

$$
H_{1}\left(e^{j \omega}\right)=\frac{1}{N} H_{0}\left(e^{j \omega}\right) H_{0}\left(e^{-j \omega}\right)=\frac{1}{N} \frac{\sin ^{2}(\omega N / 2)}{\sin ^{2}(\omega / 2)}
$$

In order to perfectly recover $x[n]$, we require $H_{L}\left(e^{j \omega}\right)=H_{1}\left(e^{j \omega}\right) H\left(e^{j \omega}\right)$ to be the same as in part (b). Following the same reasoning as in part (b), we see that

$$
H\left(e^{j \omega}\right)=\left\{\begin{array}{cc}
N^{2} \frac{\sin ^{2}(\omega / 2)}{\sin ^{2}(\omega N / 2)} & |\omega|<\pi / N \\
0 & \text { else }
\end{array}\right.
$$

A plot of $\left|H\left(e^{j \omega}\right)\right|$ for $N=2$ is given below.

Figure 6: Problem 3 (d)

Problem 4 (Oversampled D / A.)

Figure 7: Problem 4. Block diagram of oversampled D/A

- (a)

We know that that $W\left(e^{j \Omega}\right)=Y\left(e^{j L \Omega}\right)$. Applying a LPF to $w[n]$ gives a signal $z[n]$ with spectrum

$$
Z\left(e^{j \Omega}\right)=\left\{\begin{array}{cc}
L & |\Omega|<\frac{3 \pi}{4 L} \\
0 & \frac{3 \pi}{4 L}<|\Omega|<\pi
\end{array}\right.
$$

The spectra $W\left(e^{j \Omega}\right)$ and $Z\left(e^{j \Omega}\right)$ are plotted in the following figure.

Figure 8: Problem 4 (a)

The specturm of the output of the ZOH is given by $Z\left(e^{j \omega T}\right)$ multiplied by the frequency response of $p(t)$

$$
\begin{aligned}
Y_{a}(j \omega) & =Z\left(e^{j \omega T}\right) \cdot e^{-j \omega T / 2} \cdot T \cdot \operatorname{sinc}(\omega T / 2) \\
& =Z\left(e^{j \omega / L}\right) \cdot e^{-j \omega /(2 L)} \cdot \frac{1}{L} \cdot \operatorname{sinc}(\omega /(2 L))
\end{aligned}
$$

where we are using the definition $\operatorname{sinc}(x)=\sin (x) / x$. The magnitude of the output is given by

$$
\left|Y_{a}(j \omega)\right|=\left|Z\left(e^{j \omega / L}\right)\right| \cdot \frac{1}{L} \cdot|\operatorname{sinc}(\omega /(2 L))|
$$

Plots of $\left|Y_{a}(j \omega)\right|$ in the interval $-5 \pi L \leq \omega \leq 5 \pi L$ are shown in the following figure.

Figure 9: Problem 4 (a)

- (b)

The ideal D / A converter is a LPF, which removes all of the high frequency images in the spectrum. Therefore, the magnitude spectrum $|Y(j \omega)|$ is as shown in the following figure.

Figure 10: Problem 4 (b)

- (c)

The largest component of $\left|Y_{a}(j \omega)\right|$ outside of $|\omega| \leq \pi L$ is the left edge of the copy of the spectrum centered at $2 \pi L$. At that point, the magnitude is equal to

$$
\operatorname{sinc}\left(\frac{2 \pi L-3 \pi / 4}{2 L}\right)=\operatorname{sinc}\left(\pi-\frac{3 \pi}{8 L}\right)
$$

For $L=1$, the magnitude of the largest out of band component is 0.4705
For $L=2$, the magnitude of the largest out of band component is 0.2177
For $L=4$, the magnitude of the largest out of band component is 0.1020

Problem 5 (Aliasing.)

- (a)

The plot of $X_{T}\left(e^{j \Omega}\right)$ is shown in the following figure.

- (b)

The shifted copies of $X(j \omega)$ that make up $\tilde{X}_{T}\left(e^{j \Omega}\right)$ are shown in the following figure.
Aliasing occurs because each copy of $X(j \omega)$ has non-zero components outside the interval $\left[-\frac{\pi}{T}, \frac{\pi}{T}\right]$. In fact, because $X(j \omega)$ extends infinitely far in both directions, every copy of $X(j \omega)$ overlaps with every other copy.

(5) (a)

Figure 11: Problem 5 (a)

Figure 12: Problem 5 (b)

- (c)

$$
\begin{aligned}
\tilde{X}_{T}\left(e^{j \Omega}\right) & =\frac{1}{T} \sum_{n=-\infty}^{\infty} e^{-\left|\frac{\Omega-n 2 \pi}{T}\right|} \\
& =\frac{1}{T} \sum_{n=-\infty}^{-1} e^{-\left|\frac{\Omega-n 2 \pi}{T}\right|}+\frac{1}{T} e^{-\left|\frac{\Omega}{T}\right|}+\frac{1}{T} \sum_{n=1}^{\infty} e^{-\left|\frac{\Omega-n 2 \pi}{T}\right|} \\
& =\frac{1}{T} \sum_{m=1}^{\infty} e^{-\left|\frac{\Omega+m 2 \pi}{T}\right|}+\frac{1}{T} e^{-\left|\frac{\Omega}{T}\right|}+\frac{1}{T} \sum_{n=1}^{\infty} e^{-\left|\frac{\Omega-n 2 \pi}{T}\right|} \\
& =\frac{1}{T} \sum_{m=1}^{\infty} e^{-\left(\frac{\Omega+m 2 \pi}{T}\right)}+\frac{1}{T} e^{-\left|\frac{\Omega}{T}\right|}+\frac{1}{T} \sum_{n=1}^{\infty} e^{\left(\frac{\Omega-n 2 \pi}{T}\right)} \\
& =\frac{1}{T} e^{-\frac{\Omega}{T}} \sum_{m=1}^{\infty}\left(e^{-\frac{2 \pi}{T}}\right)^{m}+\frac{1}{T} e^{-\left|\frac{\Omega}{T}\right|}+\frac{1}{T} e^{\frac{\Omega}{T}} \sum_{n=1}^{\infty}\left(e^{-\frac{2 \pi}{T}}\right)^{n} \\
& =\frac{1}{T} e^{-\frac{\Omega}{T}} \frac{e^{-2 \pi / T}}{1-e^{-2 \pi / T}}+\frac{1}{T} e^{-\left|\frac{\Omega}{T}\right|}+\frac{1}{T} e^{\frac{\Omega}{T}} \frac{e^{-2 \pi / T}}{1-e^{-2 \pi / T}} \\
& =\frac{1}{T} e^{-\frac{\Omega}{T}} \frac{1}{e^{2 \pi / T}-1}+\frac{1}{T} e^{-\left|\frac{\Omega}{T}\right|}+\frac{1}{T} e^{\frac{\Omega}{T}} \frac{1}{e^{2 \pi / T}-1}
\end{aligned}
$$

Problem 6 (Aliasing - continued.)

- (a)

We first define a new signal $z[n]=\tilde{x}_{T}[n]-x_{T}[n]$. Now, we use Parseval's relation to show that

$$
\begin{aligned}
E & =\sum_{n=-\infty}^{\infty}\left|\tilde{x}_{T}[n]-x_{T}[n]\right|^{2} \\
& =\sum_{n=-\infty}^{\infty}|z[n]|^{2} \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|Z\left(e^{j \Omega}\right)\right|^{2} d \Omega \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\tilde{X}_{T}\left(e^{j \Omega}\right)-X_{T}\left(e^{j \Omega}\right)\right|^{2} d \Omega
\end{aligned}
$$

Now, from Problem 5, part (c), we see that we can write

$$
\tilde{X}_{T}\left(e^{j \Omega}\right)-X_{T}\left(e^{j \Omega}\right)=K\left(e^{-\frac{\Omega}{T}}+e^{\frac{\Omega}{T}}\right)
$$

where

$$
K=\frac{1}{T} \frac{1}{e^{2 \pi / T}-1}
$$

Now, we evaluate the integral as

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\tilde{X}_{T}\left(e^{j \Omega}\right)-X_{T}\left(e^{j \Omega}\right)\right|^{2} d \Omega & =\frac{1}{2 \pi} K^{2} \int_{-\pi}^{\pi}\left(e^{-\frac{\Omega}{T}}+e^{\frac{\Omega}{T}}\right)^{2} d \Omega \\
& =\frac{1}{2 \pi} K^{2} \int_{-\pi}^{\pi} e^{-\frac{2 \Omega}{T}}+2+e^{\frac{2 \Omega}{T}} d \Omega \\
& =\frac{1}{2 \pi} K^{2}\left[-\frac{T}{2} e^{-\frac{2 \Omega}{T}}+2 \Omega+\frac{T}{2} e^{\frac{2 \Omega}{T}}\right]_{\Omega=-\pi}^{\pi} \\
& =\frac{1}{2 \pi} K^{2}\left[-\frac{T}{2} e^{-\frac{2 \pi}{T}}+\frac{T}{2} e^{\frac{2 \pi}{T}}+4 \pi+\frac{T}{2} e^{\frac{2 \pi}{T}}-\frac{T}{2} e^{\frac{-2 \pi}{T}}\right] \\
& =\frac{1}{2 \pi} K^{2}\left[4 \pi+T e^{\frac{2 \pi}{T}}-T e^{\frac{-2 \pi}{T}}\right] \\
& =\frac{2}{T^{2}} \frac{1}{\left(e^{2 \pi / T}-1\right)^{2}}+\frac{1}{2 \pi T} \frac{e^{2 \pi / T}}{\left(e^{2 \pi / T}-1\right)^{2}}-\frac{1}{2 \pi T} \frac{e^{-2 \pi / T}}{\left(e^{2 \pi / T}-1\right)^{2}}
\end{aligned}
$$

- (b)

As T tends to zero, E tends to 0 . This can be seen by examining the last equation, and remembering that as T goes to zero, $e^{2 \pi / T}$ increases more quickly than T decreases. (This can be verified by plotting E as a function of T in Matlab.)
This agrees with our intuition. We know that when we multiply $x(t)$ by the impulse train $p(t)$, the copies of $X(j \omega)$ in $X_{p}(j \omega)$ are centered at every multiple of $2 \pi / T$. As T tends to zero, the copies of $X(j \omega)$ get very far apart. Because $X(j \omega)=e^{-|\omega|}$, when the copies of $X(j \omega)$ get very far apart, the amount of aliasing becomes negligible.

Problem 7 (AM Communication Systems.)
OWN Problem 8.22
The spectrum $Y(j \omega)$ is sketched in the following figure.
8.22

Figure 13: Problem 7

