
EECS 120 Signals & Systems University of California, Berkeley: Fall 2006
Ramchandran October 26, 2006

Homework 7 Solutions

Problem 1 (Downsampling.)

OWN Problem 7.35

• (a)
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Figure 1: Problem 1 (a)

• (b)

Discrete-time impulse-train sampling of x[n] generates the signal xp[n] .
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xp[n] =

{

x[n], n = 0,±2,±4, . . .
0, n = ±1,±3, . . .

=

∞
∑

k=−∞

x[2k]δ[n − 2k]

= x[n]p[n]

P (ejω) = π

∞
∑

k=−∞

δ(ω − πk)

Xp(e
jω) =

1

2π

∫

2π

P (ejθ)X(ej(ω−θ))dθ

=
1

2

1
∑

k=0

X(ej(ω−πk))

Decimation of x[n] generates the signal xd[n] .

xd[n] = x[2n] = xp[2n]

Xd(e
jω) = Xp(e

j ω

2 )
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Figure 2: Problem 1 (b)

Problem 2 (Upsampling.)

OWN Problem 7.49

• (a)

Let xd1
[n] and xd2

[n] be two inputs to the system, with corresponding outputs xp1
[n] and xp2

[n] .
Now, consider an input of the form xd3

[n] = α1xd1
[n] + α2xd2

[n] . With this input, the output of
the system will be

xp3
[n] =

{

α1xd1
[n/N ] + α2xd2

[n/N ] n = 0,±N,±2N, . . .
0 else

Thus, xp3
[n] = α1xp1

[n] + α2xp2
[n] . This means that the system is linear.

• (b)

The system is not time invariant. For example, an input δ[n] gives an output δ[n] , while an
input δ[n − 1] gives an output δ[n − N ] .

• (c)
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Xp(e
jω) =

∞
∑

n=−∞

xp[n]ejωn

=
∞
∑

k=−∞

xp[kN ]ejωkN

=

∞
∑

k=−∞

xd[k]ejωkN

= Xd(e
jωN )

The plot of Xp(e
jω) is shown in the figure in part (d).

• (d)

The plot of X(ejω) is shown in the following figure.

Figure 3: Problem 2 (c) and (d)
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Problem 3 (Zero-Order and First-Order Holds.)

OWN Problem 7.50

• (a)

h0[n] =

{

1 n = 0, 1, ..., N − 1
0 else

n

1

N−11 20

h0[n]

• (b)

The condition ωS = 2π
N > 2ωM is equivalent to ωM < π

N . Because

Xp(e
jω) =

1

N

N−1
∑

k=0

X(ej(ω−kωS))

the signals X(ejω) and Xp(e
jω) can be sketched as follows.
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Figure 4: Problem 3 (b)

In order to perfectly recover x[n] , we require that

HL(ejω) = H0(e
jω)H(ejω) =

{

N |ω| < π/N
0 else

The frequency response of the ZOH is given by
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H0(e
jω) =

N−1
∑

n=0

e−jωn =
1 − e−jωN

1 − e−jω
= e(−jω(N−1)/2) ·

sin(ωN/2)

sin(ω/2)

Therefore,

H(ejω) =
HL(ejω)

H0(ejω)
=

{

Ne(jω(N−1)/2) · sin(ω/2)
sin(ωN/2) |ω| < π/N

0 else

A plot of |H(ejω)| for N = 2 is given below.
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Figure 5: Problem 3 (b)

• (c)

h1[n] =

{

1 −
∣

∣

n
N

∣

∣ n = −N, ..., N
0 else

1

n

−2 −1 0 1 2 N−N

h1[n]

• (d)

First, we observe that h1[n] = 1
N h0[n] ∗ h0[−n] . Therefore,

H1(e
jω) =

1

N
H0(e

jω)H0(e
−jω) =

1

N

sin2(ωN/2)

sin2(ω/2)

In order to perfectly recover x[n] , we require HL(ejω) = H1(e
jω)H(ejω) to be the same as in part

(b). Following the same reasoning as in part (b), we see that
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H(ejω) =

{

N2 sin2(ω/2)
sin2(ωN/2)

|ω| < π/N

0 else

A plot of |H(ejω)| for N = 2 is given below.
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Figure 6: Problem 3 (d)
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Problem 4 (Oversampled D/A.)

z[n]w[n]L Gain = L ZOH D/A
Ideal LPFy[n]

Cutoff = π/L

ya(t)

Figure 7: Problem 4. Block diagram of oversampled D/A

• (a)

We know that that W (ejΩ) = Y (ejLΩ) . Applying a LPF to w[n] gives a signal z[n] with spectrum

Z(ejΩ) =

{

L |Ω| < 3π
4L

0 3π
4L < |Ω| < π

The spectra W (ejΩ) and Z(ejΩ) are plotted in the following figure.
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Figure 8: Problem 4 (a)
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The specturm of the output of the ZOH is given by Z(ejωT ) multiplied by the frequency response
of p(t)

Ya(jω) = Z(ejωT ) · e−jωT/2 · T · sinc(ωT/2)

= Z(ejω/L) · e−jω/(2L) ·
1

L
· sinc(ω/(2L))

where we are using the definition sinc(x) = sin(x)/x . The magnitude of the output is given by

|Ya(jω)| = |Z(ejω/L)| ·
1

L
· |sinc(ω/(2L))|

Plots of |Ya(jω)| in the interval −5πL ≤ ω ≤ 5πL are shown in the following figure.
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Figure 9: Problem 4 (a)
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• (b)

The ideal D/A converter is a LPF, which removes all of the high frequency images in the spectrum.
Therefore, the magnitude spectrum |Y (jω)| is as shown in the following figure.

Figure 10: Problem 4 (b)

• (c)

The largest component of |Ya(jω)| outside of |ω| ≤ πL is the left edge of the copy of the spectrum
centered at 2πL . At that point, the magnitude is equal to

sinc

(

2πL − 3π/4

2L

)

= sinc

(

π −
3π

8L

)

For L = 1 , the magnitude of the largest out of band component is 0.4705

For L = 2 , the magnitude of the largest out of band component is 0.2177

For L = 4 , the magnitude of the largest out of band component is 0.1020

Problem 5 (Aliasing.)

• (a)

The plot of XT (ejΩ) is shown in the following figure.

• (b)

The shifted copies of X(jω) that make up X̃T (ejΩ) are shown in the following figure.

Aliasing occurs because each copy of X(jω) has non-zero components outside the interval [− π
T , π

T ] .
In fact, because X(jω) extends infinitely far in both directions, every copy of X(jω) overlaps with
every other copy.
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Figure 11: Problem 5 (a)

Figure 12: Problem 5 (b)
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• (c)

X̃T (ejΩ) =
1

T

∞
∑

n=−∞

e−|
Ω−n2π

T |

=
1

T

−1
∑

n=−∞

e−|
Ω−n2π

T | +
1

T
e−|

Ω
T | +

1

T

∞
∑

n=1

e−|
Ω−n2π

T |

=
1

T

∞
∑

m=1

e−|
Ω+m2π

T | +
1

T
e−|

Ω
T | +

1

T

∞
∑

n=1

e−|
Ω−n2π

T |

=
1

T

∞
∑

m=1

e−(Ω+m2π

T ) +
1

T
e−|

Ω
T | +

1

T

∞
∑

n=1

e(
Ω−n2π

T )

=
1

T
e−

Ω
T

∞
∑

m=1

(

e−
2π

T

)m

+
1

T
e−|

Ω
T | +

1

T
e

Ω
T

∞
∑

n=1

(

e−
2π

T

)n

=
1

T
e−

Ω
T

e−2π/T

1 − e−2π/T
+

1

T
e−|

Ω
T | +

1

T
e

Ω
T

e−2π/T

1 − e−2π/T

=
1

T
e−

Ω
T

1

e2π/T − 1
+

1

T
e−|

Ω
T | +

1

T
e

Ω
T

1

e2π/T − 1

Problem 6 (Aliasing - continued.)

• (a)

We first define a new signal z[n] = x̃T [n] − xT [n] . Now, we use Parseval’s relation to show that

E =

∞
∑

n=−∞

|x̃T [n] − xT [n]|
2

=

∞
∑

n=−∞

|z[n]|
2

=
1

2π

∫ π

−π

∣

∣Z(ejΩ)
∣

∣

2
dΩ

=
1

2π

∫ π

−π

∣

∣

∣
X̃T (ejΩ) − XT (ejΩ)

∣

∣

∣

2

dΩ

Now, from Problem 5, part (c), we see that we can write

X̃T (ejΩ) − XT (ejΩ) = K
(

e−
Ω
T + e

Ω
T

)

where

K =
1

T

1

e2π/T − 1

Now, we evaluate the integral as
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1

2π

∫ π

−π

∣

∣

∣
X̃T (ejΩ) − XT (ejΩ)

∣

∣

∣

2

dΩ =
1

2π
K2

∫ π

−π

(

e−
Ω
T + e

Ω
T

)2

dΩ

=
1

2π
K2

∫ π

−π

e−
2Ω
T + 2 + e

2Ω
T dΩ

=
1

2π
K2

[

−
T

2
e−

2Ω
T + 2Ω +

T

2
e

2Ω
T

]π

Ω=−π

=
1

2π
K2

[

−
T

2
e−

2π

T +
T

2
e

2π

T + 4π +
T

2
e

2π

T −
T

2
e

−2π

T

]

=
1

2π
K2

[

4π + Te
2π

T − Te
−2π

T

]

=
2

T 2

1

(e2π/T − 1)2
+

1

2πT

e2π/T

(e2π/T − 1)2
−

1

2πT

e−2π/T

(e2π/T − 1)2

• (b)

As T tends to zero, E tends to 0 . This can be seen by examining the last equation, and re-
membering that as T goes to zero, e2π/T increases more quickly than T decreases. (This can be
verified by plotting E as a function of T in Matlab.)

This agrees with our intuition. We know that when we multiply x(t) by the impulse train p(t) ,
the copies of X(jω) in Xp(jω) are centered at every multiple of 2π/T . As T tends to zero, the
copies of X(jω) get very far apart. Because X(jω) = e−|ω| , when the copies of X(jω) get very
far apart, the amount of aliasing becomes negligible.

Problem 7 (AM Communication Systems.)

OWN Problem 8.22

The spectrum Y (jω) is sketched in the following figure.
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Figure 13: Problem 7
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