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Problem 1 (Image Suppression.)

In this problem we are interested in extracting the desired signal mr(t) at frquency ωIF at the output.

(a)

Let’s write the output of each stage of the system:

x(t) = x(t) = mr(t) cos(ωLO + ωIF )t + mI(t) cos(ωLO − ωIF )t

A = x(t) cos(ωLOt) =
1

2

{

mr(t)(cos(2ωLO + ωIF )t + cosωIF t)
+mI(t)(cos(2ωLO − ωIF )t + cosωIF t)

}

B = x(t) sin(ωLOt) =
1

2

{

mr(t)(sin(2ωLO + ωIF )t− sin ωIF t)
+mI(t)(sin(2ωLO − ωIF )t + sin ωIF t)

}

C =
1

2

{

mr(t)(− cos(2ωLO + ωIF )t + cosωIF t)
+mI(t)(− cos(2ωLO − ωIF )t− cosωIF t)

}

y(t) = A + C = mr(t) cosωIF t

(b)

A = x(t)(1 + α) cos(ωLOt +
φ

2
) =

1

2

{

mr(t)(1 + α)(cos((2ωLO + ωIF )t + φ

2 ) + cos((ωIF t− φ

2 ))

+mI(t)(1 + α)(cos((2ωLO − ωIF )t + φ
2 ) + cos((ωIF )t + φ

2 ))

}

B = x(t)(1 − α) sin(ωLOt−
φ

2
) =

1

2

{

mr(t)(1 − α)(sin((2ωLO + ωIF )t− φ

2 )− sin(ωIF t + φ

2 )

+mI(t)(1− α)(sin((2ωLO − ωIF )t− φ
2 ) + sin(ωIF t− φ

2 ))

}

C =
1

2

{

mr(t)(1 − α)(− cos((2ωLO + ωIF )t− φ

2 ) + cos(ωIF t + φ

2 ))

+mI(t)(1 − α)(− cos((2ωLO − ωIF )t− φ

2 )− cos(ωIF t + φ

2 ))

}

We are only interested in the components of the output at ωIF :

y(t) = A + C =
1

2
mr(t)[(1 + α) cos(ωIF t−

φ

2
) + (1− α) cos(ωIF t +

φ

2
)]

+
1

2
mI(t)[(1 + α) cos(ωIF t +

φ

2
)− (1− α) cos(ωIF t−

φ

2
)]

= mr(t)[cos(ωIF t) cos(
φ

2
) + α sin(ωIF t) sin(

φ

2
)] + mI(t)[α cos(ωIF t) cos(

φ

2
)− sin(ωIF t) sin(

φ

2
)]
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(c)

Let Mr(jω) = FT {mr(t)} , and MI(jω) = FT {mI(t)} . Furthermore, since we assume that both the
desired signal and the image have equal power at the input, then

∫ ∞

−∞
|Mr(jω)|2dω =

∫ ∞

−∞
|MI(jω)|2dω =

P . Assuming that the Bandwidth of both mr(t) and mI(t) is small relative to ωIF :

⇒M IF
r (jω) = FT {mr(t)[cos(ωIF t) cos(

φ

2
) + α sin(ωIF t) sin(

φ

2
)]}

=
1

2
(cos(

φ

2
)− jα sin(

φ

2
))Mr(j(ω − ωIF )) +

1

2
(cos(

φ

2
) + jα sin(

φ

2
))Mr(j(ω + ωIF ))

⇒

∫ ∞

−∞

|M IF
r (jω)|2dω =

P

2
(cos2(

φ

2
) + α2 sin2(

φ

2
))

⇒M IF
I (jω) = FT {mI(t)[α cos(ωIF t) cos(

φ

2
)− sin(ωIF t) sin(

φ

2
)]}

=
1

2
(α cos(

φ

2
) + j sin(

φ

2
))MI(j(ω − ωIF )) +

1

2
(α cos(

φ

2
)− j sin(

φ

2
))MI(j(ω + ωIF ))

⇒

∫ ∞

−∞

|M IF
I (jω)|2dω =

P

2
(α2 cos2(

φ

2
) + sin2(

φ

2
))

⇒ IR =
cos2(φ

2 ) + α2 sin2(φ
2 )

α2 cos2(φ

2 ) + sin2(φ

2 )

Problem 2 (FSK.) OWN Problem 8.39.

(a)

There are two possible cases.

Case 0: b(t) = m0(t) .

D0 =

∣

∣

∣

∣

∣

∫ T

0

cos2(ω0t)dt

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∫ T

0

cos(ω0t) cos(ω1t)dt

∣

∣

∣

∣

∣

Case 1: b(t) = m1(t) .

D1 =

∣

∣

∣

∣

∣

∫ T

0

cos2(ω1t)dt

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∫ T

0

cos(ω0t) cos(ω1t)dt

∣

∣

∣

∣

∣

Both D0 and D1 are maximum when
∫ T

0
cos(ω0t) cos(ω1t)dt = 0 .

(b)

∫ T

0

cos(ω0t) cos(ω1t)dt =

∫ T

0

1

2
(cos((ω0 + ω1)t) + cos((ω0 − ω1)t))dt

=

[

sin((ω0 + ω1)t)

2(ω0 + ω1)
+

sin((ω0 − ω1)t)

2(ω0 − ω1)

]T

0

=
sin((ω0 + ω1)T )

2(ω0 + ω1)
+

sin((ω0 − ω1)T )

2(ω0 − ω1)
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Thus for any choice of ω0 and ω1 , ω0 6= ω1 , we can always find T so that
∫ T

0
cos(ω0t) cos(ω1t)dt = 0 .

Problem 3 (Angle Modulations.)

The general form of an angle modulated signal:

A cos(2πfct + kpam(t)) (PM)

A cos(2πfct + kfa

∫

m(t)) (FM)

The modulation index is defined as:

βp = kpa max[|m(t)|] = ∆φmax (PM)

βf =
kfa max[|m(t)|]

W
=

∆fmax

W
(FM)

Where ∆φmax and ∆fmax are the maximum phase and frequency deviations respectively. W is the
bandwidth of the modulating signal in Hz (i.e. m(t) is bandlimited to W ). In this problem, the
modulated signal:

u(t) = 100 cos(2πfct + 4 sin 2πfmt)

The instantaneous phase φ(t) = 2πfct + 4 sin(2πfmt) , the instantaneous frequency f(t) = 1
2π

dφ(t)
dt

=
fc + 4fm cos(2πfmt) , and W = fm .

⇒ ∆φmax = 4, ∆fmax = 4fm

⇒ βp = ∆φmax = 4, βf =
∆fmax

fm

= 4

We estimate the effective bandwidth Bc (same for both PM and FM) of the modulated signal using
Carson’s rule:

Bc ≈ 2(β + 1)W

According to OWN, Bc = 2βW (both answers are acceptable).

Bc = 2(4 + 1)fm = 10KHz

For SSB, the bandwidth of the modulated signal is fm = 1KHz. I have only considered the positive side
bands in this problem. If you wish to include the negative side bands, then simply scale Bc by a factor
of 2 . Also, notice that Bc is directly proportional to fm . Therefore, when fm is doubled:

Bc = 20KHz

Problem 4 (Laplace Transforms.)

(a) OWN Problem 9.21 (c).
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x(t) = e2tu(−t) + e3tu(−t)

We can find the following Laplace transform pairs in Table 9.2 of OWN:

e2tu(−t) ←→ −
1

s− 2
, with ROC Re{s} < 2

e3tu(−t) ←→ −
1

s− 3
, with ROC Re{s} < 3

By the linearity property of the Laplace transform (see Table 9.1 of OWN)

X(s) = −
1

s− 2
−

1

s− 3
=

−2s + 5

(s− 2)(s− 3)

with region of convergence (ROC) Re{s} < 2 . Thus X(s) has a pole at 2 , another pole at 3 , and a
zero at −2.5 .

(b) OWN Problem 9.21 (e).

x(t) = |t|e−2|t| = te−2tu(t)− te2tu(−t)

Using the Laplace transform tables again, we find the following Laplace transform pairs in OWN Table
9.2

e−2tu(t) ←→
1

s + 2
, with ROC Re{s} > −2

e2tu(−t) ←→ −
1

s− 2
, with ROC Re{s} < 2

By the differentiation in the s-domain property, in OWN Table 9.1,

te−2tu(t) ←→ −
d

ds

(

1

s + 2

)

=
1

(s + 2)2

−te2tu(−t) ←→
d

ds

(

−
1

s− 2

)

=
1

(s− 2)2

Finally by the linearity property,

X(s) =
1

(s + 2)2
+

1

(s− 2)2
=

2s2

(s + 2)2(s− 2)2

with ROC −2 < Re{s} < 2 . Thus X(s) has two poles at −2 , two poles at 2 , and two zeros at 0 .

Problem 5 (LT/LT Properties.)

(a) OWN Problem 9.21 (g).

x(t)

{

1, 0 ≤ t ≤ 1
0, otherwise
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⇒ X(s) =

∫ ∞

−∞

x(t)e−stdt =

∫ 1

0

e−stdt =
1− e−s

s

Even though there is a pole at s = 0 , there also is a zero at s = 0 . Due to the pole-zero cancellation,
the ROC of x(t) is the entire s-plane.

(b) OWN Problem 9.26.

x1(t) = e−2tu(t), x2(t) = e−3tu(t)

y(t) = x1(t− 2) ∗ x2(3 − t)

Using the time shifting, time scaling (reversal), convolution properties:

x1(t) = e−2tu(t) ←→ X1(s) = L{x1(t)} =
1

s + 2
, with ROC Re{s} > −2

x2(t) = e−3tu(t) ←→ X2(s) = L{x2(t)} =
1

s + 3
, with ROC Re{s} > −3

x1(t− 2) ←→ L{x1(t− 2)} = e−2sX1(s) =
e−2s

s + 2
, with ROC Re{s} > −2

x2(3 − t) ←→ L{x2(3− t)} = e−3sX2(−s) =
e−3s

3− s
, with ROC Re{s} < 3

y(t) ←→ Y (s) = L{y(t)} = e−5sX1(s)X2(−s) =
e−5s

(3− s)(s + 2)
, −2 < Re{s} < 3

The convolution property indicates that the ROC of y(t) must contain the intersection of the ROCs
of both x1(t − 2) and x2(3 − t) . However, in this case we know that the ROC of y(t) is exactly the
intersection of the ROCs of x1(t− 2) and x2(3− t) since there is no pole-zero cancellation. Notice that
the ROC is preserved under time shifting, but not under time scaling and time reversal.

Problem 6 (Inverse Laplace.)

(a) OWN Problem 9.22 (a).

Using the Laplace transform pairs Table 9.2 of OWN, we can immediately find the inverse Laplace
transform of X(s) to be x(t) = 1

3 sin(3t)u(t) . Alternatively we can use partial fraction expansions to
find the inverse.

X(s) =
1

s2 + 9

=
j/6

s + j3
+
−j/6

s− j3

for Re(s) > 0

x(t) =
j

6
e−j3tu(t)−

j

6
ej3tu(t)

= −
j

6
2j sin(3t)u(t)

=
1

3
sin(3t)u(t)

(b) OWN Problem 9.22 (b).
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X(s) =
s

s2 + 9

=
1/2

s + j3
+

1/2

s− j3

for Re(s) < 0

x(t) = −
1

2
e−j3tu(−t)−

1

2
ej3tu(−t)

= − cos(3t)u(−t)

Problem 7 (Matlab - Synchronization in PAM.)

(a)

Figure 1 shows that the signal-to-interference (SIR) ratio is 1 when the synchronization offset ∆t = 0 and
there is no intersymbol interference, and decreases to less than 1

2 as the synchronization offset increases
to half the sampling period Ts = 1 . The sinc pulse is relatively sensitive to synchronization offsets
because it dies off as 1

|t| .

Figure 1: Problem 7 (a).

(b)

Figure 2 shows that when α = 0 , the SIR ratio is unchanged because the raised cosine pulse is equal
to the sinc pulse. As α increases to 1, the SIR ratio for the raised cosine pulse decays more and more
slowly for ∆t ∈ [0, .5] . Thus the raised cosine pulse is less sensitive to synchronization offsets for larger
values of α . At α = 1 , the SIR ratio decreases to half the max power when the synchronization offset is
half the sampling period. As the synchronization offset increases to the sampling period, the SIR ratio
goes to zero.
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Figure 2: Problem 7 (b).

(c)

With Ts = 1 , the bandwidth of the raised cosine pulse is (1 + α)π (see Figure 3). The bandwidth is an
increasing function of α , while the synchronization error is a decreasing function of α . The tradeoff is
between bandwidth used by the PAM system and the sensitivity of the pulse to synchronization offsets.
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Figure 3: Problem 7 (c).
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