Problem 1

The system is not memoryless, linear, not time-invariant (counter example $x(t)=t$), non-causal and non-stable (counter example $x(t)=1$ for all t).

Problem 2

Problem 2

(i)

$$
\begin{aligned}
y(t) & =x_{1}(t) * x_{2}(t)=x_{1}(t) *\left(\delta(t-1)-\delta(t-2)+\frac{1}{2} \delta(t-4)\right) \\
& =x_{1}(t-1)-x_{1}(t-2)+\frac{1}{2} x_{1}(t-4)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& x(j \omega)= \begin{cases}|\omega| e^{-j \omega,}, & \text { if }|\omega|<1 \\
0, & \text { etherwise }\end{cases} \\
& x(t)=\frac{1}{2 \pi} \int_{-1}^{1}|\omega| e^{-j \omega} e^{j \omega t} d \omega \quad \text { inverse FT } \\
& =\frac{1}{2 \pi} \int_{-1}^{0}-w e^{+j \omega(t-1)} d \omega+\frac{1}{2 \pi} \int_{0}^{1} w e^{j \omega(t-1)} d \omega \\
& =\frac{1}{2 \pi}\left[-\omega \frac{e^{j \omega(t-1)}}{j(t-1)}-\frac{e^{j \omega(t-1)}}{(t-1)^{2}}\right]_{-1}^{0} \\
& +\frac{1}{2 \pi}\left[-\omega \frac{e^{j \omega(t-1)}}{j(t-1)}+\frac{e^{j \omega(t-1)}}{(t-1)^{2}}\right]_{0}^{1} \\
& =\frac{1}{2 \pi}\left[-\frac{1}{(t-1)^{2}}-\frac{e^{-j(t-1)}}{j(t-1)}+\frac{e^{-j(t-1)}}{(t-1)^{2}}+\frac{e^{j(t-1)}}{j(t-1)}+\frac{e^{j(t-1)}}{(t-1)^{2}}-\frac{1}{(t-1)^{2}}\right] \\
& =\frac{1}{j 2 \pi(t-1)}\left(e^{j(t-1)}-e^{-j(t-1)}\right)+\frac{1}{2 \pi(t-1)^{2}}\left(e^{j(t-1)}+e^{-j(t-1)}\right)-\frac{1}{\pi(t-1)^{2}} \\
& =\frac{\sin (t-1)}{\pi(t-1)}+\frac{\cos (t-1)-1}{\pi(t-1)^{2}}
\end{aligned}
$$

Problem 3
Problem 3
(i)

$$
a^{2} y(t)+2 a \frac{d}{d t} y(t)+\frac{d^{2}}{d t^{2}} y(t)=x(t)
$$

Taking the Fourier transform of both sides

$$
\begin{aligned}
& a^{2} Y(j \omega)+2 a(j \omega) Y(j \omega)+(j \omega)^{2} Y(j \omega)=X(j \omega) \\
& \Rightarrow H(j \omega)=\frac{Y(j \omega)}{X(j \omega)}=\frac{1}{a^{2}+2 a(j \omega)+(j \omega)^{2}}=\frac{1}{(a+j \omega)^{2}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \text { For } a=\frac{1}{2}, H(j \omega)=\frac{1}{\left(\frac{1}{2}+j \omega\right)^{2}} \\
& \Rightarrow|H(j \omega)|=\frac{1}{\left|\frac{1}{2}+j \omega\right|^{2}}=\frac{1}{\frac{1}{4}+\omega^{2}}
\end{aligned}
$$

\Rightarrow This system is a lowpass filter as $|\omega| \rightarrow \infty,|H(j \omega\rangle| \rightarrow 0$
(iii)

The system is stable iff $\int_{-\infty}^{\infty}|h(t)| d t<\infty$
case 1: $a>0$

$$
\begin{aligned}
& H(j \omega)=\frac{1}{(a+j \omega)^{2}} \stackrel{F T \text { table }}{\longleftrightarrow} h(t)=t e^{-a t} u(t) \\
& \begin{aligned}
& \int_{-\infty}^{\infty}|h(t)| d t=\int_{-\infty}^{\infty}\left|t e^{-a t} u(t)\right| d t=\int_{0}^{\infty} t e^{-a t} d t \\
&=\left[t \frac{e^{-a t}}{-a}-\frac{e^{-a t}}{a^{2}}\right]_{0}^{\infty} \\
&=\frac{1}{a^{2}} \\
& \Rightarrow \text { system is Stable ration by parts }
\end{aligned}
\end{aligned}
$$

Cause 2: $a=0$

$$
\begin{aligned}
& H(j \omega)=\frac{1}{(j \omega)^{2}} \\
& u(t)-\frac{1}{2} \stackrel{F T \text { table }}{\longleftrightarrow} \frac{1}{j \omega}
\end{aligned}
$$

By the differentiation in frequency property of $F T$

$$
\begin{aligned}
& t\left(u(t)-\frac{1}{2}\right) \stackrel{F T \text { prop }}{\stackrel{\text { PT }}{\longleftrightarrow}} \frac{1}{(j \omega)^{2}} \\
& \int_{-\infty}^{\infty}\left|t\left(u(t)-\frac{1}{2}\right)\right| d t=\infty
\end{aligned}
$$

\Rightarrow system is unstable
case 3: $a<0$

$$
\begin{aligned}
& h(t)=-t e^{-a t} u(-t) \quad \stackrel{F T}{\rightleftarrows} H(j \omega)=\frac{1}{(a t j \omega)^{2}} \\
& \int_{-\infty}^{\infty}\left|-t e^{-a t} u(-t)\right| d t=\int_{-\infty}^{0} t e^{-a t} d t=\frac{1}{a^{2}} \quad \text { same as case } 1
\end{aligned}
$$

\Rightarrow system is stable

Problem 4

$$
\text { Problem 4 } \quad h(t)=\frac{\sin (2 \pi t)}{\pi t} \quad \stackrel{F T}{\longleftrightarrow} H(j \omega)= \begin{cases}1, & |\omega|<2 \pi \\ 0, & |\omega|>2 \pi\end{cases}
$$

$$
Y(j \omega)=X(j \omega) H(j \omega)
$$

-

$$
X(j, \omega)-Y(j \omega)=\left\{\begin{array}{lll}
2, & \frac{9 \pi}{4}<|\omega|<3 \pi \\
1, & 2 \pi<|\omega|<\frac{9 \pi}{4} \\
0, & x(j \omega)-Y(j \omega) \\
\text { otherwise }
\end{array}\right.
$$

By Parseval's theorem

$$
\begin{aligned}
\int_{-\infty}^{\infty}|x(t)-y(t)|^{2} d t & =\frac{1}{2 \pi} \int_{-\infty}^{\infty}|x(j \omega)-y(j \omega)|^{2} d \omega \\
& =\frac{2}{2 \pi}\left[\int_{2 \pi}^{9 \pi / 4}(1)^{2} d \omega+\int_{9 \pi / 4}^{3 \pi}(2)^{2} d \omega\right] \\
& =\frac{13}{4}
\end{aligned}
$$

Problem 5

Problem 6

$$
\begin{aligned}
& y(t)=\frac{d}{d t} x(t) \Rightarrow Y(j \omega)=j w X(j w)=j w e^{-|\omega|} . \\
& \tilde{Y}(j \omega)=\tilde{H}(j \omega) \times(j \omega)=\left\{\begin{array}{cc}
j \omega e^{-|\omega|}, & |\omega| \leq \pi / T \\
0, & \text { othernire }
\end{array}\right. \\
& \Rightarrow E=\int_{-\infty}^{\infty}|\eta(t)-\tilde{y}(t)|^{2} d t \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty}|Y(j \omega)-\tilde{Y}(j \omega)|^{2} d \omega \\
& =\frac{1}{2 \pi}\left[\int_{\pi / T}^{\infty}\left|j \omega e^{-|\omega|}\right|^{2} d \omega+\int_{-\infty}^{-\pi / \pi}\left|j \omega e^{-|\omega|}\right|^{2} d \omega\right] \\
& =\frac{1}{2 \pi} \cdot 2 \cdot \int_{\pi / \tau}^{\infty} w^{2} e^{-2 \omega} d \omega
\end{aligned}
$$

This integral was actually provided in the exam.

$$
=\frac{1}{2 \pi} \frac{e^{-\frac{2 \pi}{T}}}{4}\left(4\left(\frac{\pi}{T}\right)^{2}+4 \frac{\pi}{T}+2\right)
$$

As we increase the sampling frequency, $T \rightarrow 0 \Rightarrow E \rightarrow 0$, which is clear: we capture more and mire of the
signal spectrum.

$$
\begin{aligned}
& \text { CONSIDER } \\
& Z_{\delta}(j \omega)=\frac{1}{T}(e^{-\omega}+\underbrace{\sum^{-\left(\frac{2 \pi}{T}+w\right)}}_{\text {BETWEEN } 0 \text { AND }}+\ldots .+\underbrace{\varepsilon e^{-\left(\frac{2 \pi}{T} e^{-\left(\frac{2 \pi}{T}-\omega\right)}\right.}}_{\text {GEOMETRIC }}+\ldots) \\
& =\frac{1}{T}(e^{-\omega}+\varepsilon \underbrace{\sum_{n=1}^{\infty} e^{-\left(n \frac{2 \pi}{T}+w\right)}}_{\text {SERIES! }}+\varepsilon \underbrace{\sum_{n=1}^{\infty} e^{-\left(n \frac{2 \pi}{T}-\omega\right)}}_{n=1})
\end{aligned}
$$

