Homework 10

Due: Thursday, November 15, 2007, at 5pm
Homework 10 GSI: Mark Johnson

Reading OWN Sections 9.3, 9.5-9.6, 9.7.1-9.7.3.
Practice Problems (Suggestions.) OWN 9.7, 9.14, 9.16
(Submit your grades to ee120.gsi@gmail.com)

Problem 1 (Laplace Transform Properties.)
(a) OWN 9.21 (g)
(b) OWN 9.26

Problem 2 (Inverse Laplace Transform.)
(a) OWN 9.22 (c)
(b) OWN 9.22 (e)
(c) OWN 9.22 (g)

Problem 3 (Stability and Causality.)
(a) OWN 9.51 (a)
(b) OWN 9.51 (b)
(c) OWN 9.51 (c)

Problem 4 (Stability and Causality (continued).)
(d) OWN 9.51 (d)
(e) OWN 9.51 (e)
(f) OWN 9.51 (f)
(g) OWN 9.51 (g)

Problem 5 (An LTI System.)
For a linear time-invariant system, it is known that the system function (also called transfer function) is given by

$$
\begin{equation*}
H(s)=\frac{5(s-3)}{(s+2)\left(s^{2}-2 s+5\right)} \tag{1}
\end{equation*}
$$

(a) Draw the pole/zero diagram for $H(s)$.
(b) Determine the differential equation that describes this system.
(c) Suppose that apart from $H(s)$, you are also told that the system is causal. Find the corresponding impulse response $h(t)$ of the system. Is the resulting system also stable?
(d) Suppose that apart from $H(s)$, you are also told that the system is stable. Find the corresponding impulse response $h(t)$ of the system. Is the resulting system also causal?

Problem 6 (LTI System Analysis.)
OWN 9.32.

Problem 7 (LTI System Analysis.)
Consider the cascade of two LTI systems as shown below

Figure 1: Problem 8
where we are told that

1. System 1 is causal with impulse response $h(t)=e^{-2 t} u(t)$
2. System 2 is causal and is characterized by the following differential equation relating its input $w(t)$ and output $y(t)$

$$
\frac{d y(t)}{d t}+y(t)=\frac{d w(t)}{d t}+\alpha w(t)
$$

3. If the input is $x(t)=e^{3 t}$, then the output is $y(t)=0$.
(a) find the system function $H(s)=Y(s) / X(s)$, determine its ROC, and sketch the pole-zero pattern. (Your answers should only have numbers in them. You have enough information to determine the value of α.)
(b) Determine the differential equation relating $y(t)$ and $x(t)$.
