Homework 10 Solutions

(Submit your grades to ee120.gsi@gmail.com)

Problem 1 (Laplace Transform Properties.)
(a) OWN Problem 9.21 (g).

$$
\begin{gathered}
x(t)=\left\{\begin{array}{cc}
1, & 0 \leq t \leq 1 \\
0, & \text { otherwise }
\end{array}\right. \\
X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t=\int_{0}^{1} e^{-s t} d t=\frac{1-e^{-s}}{s}
\end{gathered}
$$

Observe that there is a pole at $s=0$, and also a zero at $s=0$. Due to pole-zero cancellation, the pole-zero plot does not have any poles or any zeros and the ROC of $x(t)$ is the entire s-plane.
(b) OWN Problem 9.26.

$$
\begin{gathered}
x_{1}(t)=e^{-2 t} u(t), \quad x_{2}(t)=e^{-3 t} u(t) \\
y(t)=x_{1}(t-2) * x_{2}(3-t)
\end{gathered}
$$

Using the time shifting, time scaling (reversal), and convolution properties:

$$
\begin{aligned}
x_{1}(t)=e^{-2 t} u(t) & \longleftrightarrow X_{1}(s)=\mathcal{L}\left\{x_{1}(t)\right\}=\frac{1}{s+2}, \text { with ROC } \operatorname{Re}\{s\}>-2 \\
x_{2}(t)=e^{-3 t} u(t) & \longleftrightarrow X_{2}(s)=\mathcal{L}\left\{x_{2}(t)\right\}=\frac{1}{s+3}, \text { with ROC } \operatorname{Re}\{s\}>-3 \\
x_{1}(t-2) & \longleftrightarrow \mathcal{L}\left\{x_{1}(t-2)\right\}=e^{-2 s} X_{1}(s)=\frac{e^{-2 s}}{s+2}, \text { with } \operatorname{ROC} \operatorname{Re}\{s\}>-2 \\
x_{2}(t+3) & \longleftrightarrow \mathcal{L}\left\{x_{2}(t+3)\right\}=e^{3 s} X_{2}(s)=\frac{e^{3 s}}{s+3}, \text { with ROC } \operatorname{Re}\{s\}>-3 \\
x_{2}(3-t) & \longleftrightarrow \mathcal{L}\left\{x_{2}(3-t)\right\}=e^{3(-s)} X_{2}(-s)=\frac{e^{-3 s}}{3-s}, \text { with } \operatorname{ROC} \operatorname{Re}\{s\}<3 \\
y(t) & \longleftrightarrow Y(s)=\mathcal{L}\{y(t)\}=e^{-5 s} X_{1}(s) X_{2}(-s)=\frac{e^{-5 s}}{(3-s)(s+2)},-2<\operatorname{Re}\{s\}<3
\end{aligned}
$$

The convolution property indicates that the ROC of $y(t)$ must contain the intersection of the ROCs of $x_{1}(t-2)$ and $x_{2}(3-t)$. However, in this case we know that the ROC of $y(t)$ is exactly the intersection of the ROCs of $x_{1}(t-2)$ and $x_{2}(3-t)$ because there is no pole-zero cancellation. Notice that the ROC is preserved under time shifting, but not under time scaling or time reversal.

Problem 2 (Inverse Laplace Transform.)
(a) OWN 9.22 (c)

$$
X(s)=\frac{s+1}{(s+1)^{2}+9}, \quad \Re e\{s\}<-1
$$

From entry 13 in Table 9.2, we know that

$$
e^{t} \cos (3 t) u(t) \longleftrightarrow \frac{s-1}{(s-1)^{2}+9}, \quad \Re\{s\}>1
$$

Applying the time scaling property, we find

$$
e^{-t} \cos (3 t) u(-t) \longleftrightarrow-\frac{s+1}{(s+1)^{2}+9}, \quad \Re\{s\}<-1
$$

Therefore, the inverse Laplace transform of $X(s)$ is

$$
x(t)=-e^{-t} \cos (3 t) u(-t)
$$

(b) OWN 9.22 (e)

We will find a partial fraction expansion of $X(s)$, and then use entries 6 and 7 of Table 9.2 in OWN.

$$
\begin{gathered}
X(s)=\frac{s+1}{s^{2}+5 s+6}, \quad-3<\Re e\{s\}<-2 \\
X(s)=\frac{s+1}{(s+3)(s+2)}=\frac{2}{s+3}+\frac{-1}{s+2}, \quad-3<\Re e\{s\}<-2 \\
x(t)=2 e^{-3 t} u(t)+e^{-2 t} u(-t)
\end{gathered}
$$

(c) OWN 9.22 (g)

We will first express $X(s)$ as a proper fraction, and then combine the time differentiation property with entry 8 in Table 9.2 to find the inverse transform.

$$
\begin{gathered}
X(s)=\frac{s^{2}-s+1}{(s+1)^{2}}, \quad \Re e\{s\}>-1 \\
X(s)=\frac{s^{2}+2 s+1-3 s}{(s+1)^{2}}=1-\frac{3 s}{(s+1)^{2}}, \quad \Re e\{s\}>-1 \\
x(t)=\delta(t)-3 \frac{d}{d t}\left\{t e^{-t} u(t)\right\} \\
x(t)=\delta(t)-3 e^{-t} u(t)+3 t e^{-t} u(t)
\end{gathered}
$$

Problem 3 (Stability and Causality.)

Because $h(t)$ is real, its poles and zeros must occur in complex conjugate pairs. Therefore, the known poles and zeros of $H(s)$ are shown in the following figure.

Since $H(s)$ has exactly 2 zeros at infinity, $H(s)$ has at least two more unknown finite poles. If $H(s)$ has more than 4 poles, then it will have a zero at some finite location for every additional pole. Furthermore, because $h(t)$ is causal and stable, all poles of $H(s)$ must lie in the left half of the s-plane and the ROC must contain the $j \omega$ axis.

- OWN 9.51(a)

This is true. Consider $g(t)=h(t) e^{-3 t}$. The Laplace transform $G(s)=H(s+3)$ will have a ROC that is equal to the ROC of $H(s)$ shifted to the left by 3 . Clearly, the ROC of $G(s)$ will still contain the $j \omega$ axis.

- OWN 9.51(b)

There is insufficient information. As stated before, $H(s)$ has at least two more unknown poles. We do not know where the rightmost pole is, so we cannot determine the ROC of $H(s)$.

- OWN 9.51(c)

This is true. Since $H(s)$ is rational, it may be expressed as the ratio of two polynomials in s. Furthermore, since $h(t)$ is real, the coefficients of these polynomials will be real. We can write

$$
\frac{Y(s)}{X(s)}=H(s)=\frac{P(s)}{Q(s)}
$$

where $P(s)$ and $Q(s)$ are polynomials in s. The differential equation relating $y(t)$ and $x(t)$ is found by taking the inverse Laplace transform of $Y(s) Q(s)=X(s) P(s)$. Clearly, this differential equation will have only real coefficients.

Problem 4 (Stability and Causality (continued).)

- OWN 9.51(d)

This is false. Because $H(s)$ has two zeros at $s=\infty$, the limit of $H(s)$ as s goes to ∞ will be 0 .

- OWN 9.51(e)

This is true. As stated at the beginning of the problem, $H(s)$ has two zeros at infinity and at least two finite zeros, so $H(s)$ must have at least four poles.

- OWN 9.51(f)

There is insufficient information. As stated earlier, $H(s)$ may have other zeros, including zeros on the $j \omega$ axis.

- OWN 9.51(g)

This is false. We know that

$$
e^{3 t} \sin t=\frac{1}{j 2} e^{(3+j) t}-\frac{1}{j 2} e^{(3-j) t}
$$

Both $e^{(3+j) t}$ and $e^{(3-j) t}$ are eigenfunctions of the LTI system. The response of the system to these two inputs will be $H(3+j) \cdot e^{(3+j) t}$ and $H(3-j) \cdot e^{(3-j) t}$, respectively. Because $H(s)$ has zeros at $3 \pm j$, the output of the system in response to these two exponential inputs has to be zero. Therefore, the response of the system to the input $e^{3 t} \sin t$ will be 0 for all t.

Problem 5 (An LTI System.)

- (a)

$$
H(s)=\frac{5(s-3)}{(s+2)\left(s^{2}-2 s+5\right)}
$$

There is a zero at $s=3$, and poles at $s=-2$ and $s=1 \pm j 2$. The pole-zero diagram is shown in the following figure. We note that there are three possible ROCs.

- (b)

Because $H(s)=Y(s) / X(s)$, we can write $Y(s)(s+2)\left(s^{2}-2 s+5\right)=5(s-3) X(s)$, which can be expanded as

$$
s^{3} Y(s)+s Y(s)+10 Y(s)=5 s X(s)-15 X(s)
$$

The time-domain differential equation is given by

$$
\frac{d^{3} y(t)}{d t^{3}}+\frac{d y(t)}{d t}+10 y(t)=5 \frac{d x(t)}{d t}-15 x(t)
$$

- (c)

First, we find the partial fraction expansion of the transfer function.

$$
\begin{gathered}
H(s)=\frac{5(s-3)}{(s+2)\left(s^{2}-2 s+5\right)}=\frac{A}{s+2}+\frac{B s+C}{s^{2}-2 s+5} \\
5 s-15=A\left(s^{2}-2 s+5\right)+(B s+C)(s+2) \\
0 s^{2}+5 s-15=(A+B) s^{2}+(-2 A+2 B+C) s+(5 A+2 C) \\
A=\frac{-25}{13}, \quad B=\frac{25}{13}, \quad C=\frac{-35}{13} \\
H(s)=\frac{1}{13}\left(\frac{-25}{s+2}+\frac{25 s-35}{(s-1)^{2}+(2)^{2}}\right) \\
H(s)=\frac{1}{13}\left(\frac{-25}{s+2}+\frac{25(s-1)}{(s-1)^{2}+(2)^{2}}-\frac{10}{(s-1)^{2}+(2)^{2}}\right)
\end{gathered}
$$

If the system is causal, then the ROC is the right half plane $\Re\{s\}>1$. Using transform pairs 6 , 13 , and 14 in Table 9.2, we see that the impulse response is given by

$$
h(t)=-\frac{25}{13} e^{-2 t} u(t)+\frac{25}{13} e^{t} \cos (2 t) u(t)-\frac{5}{13} e^{t} \sin (2 t) u(t)
$$

The resulting system is not stable, since the ROC does not contain the $j \omega$ axis.

- (d)

If the system is stable, then the ROC must contain the $j \omega$ axis, hence the ROC is $-2<\Re\{s\}<1$. To find the inverse transform, we first combine transform pair 11 in Table 9.2 with the time scaling property in Table 9.1, with $a=-1$, to see that the function $\cos \left(\omega_{0} t\right) u(-t)$ has Laplace transform

$$
\frac{(-s)}{(-s)^{2}+\omega_{0}^{2}}=\frac{-s}{s^{2}+\omega_{0}^{2}}
$$

and ROC $\Re\{s\}<0$. Then, applying the shifting in the s-domain property from Table 9.1, with $s_{0}=1$, we see that the function $e^{t} \cos \left(\omega_{0} t\right) u(-t)$ has Laplace transform

$$
\frac{-(s-1)}{(s-1)^{2}+\omega_{0}^{2}}
$$

with ROC $\Re\{s\}<1$. Using similar reasoning, we see that the function $-e^{t} \sin \left(\omega_{0} t\right) u(-t)$ has Laplace transform

$$
\frac{\omega_{0}}{(s-1)^{2}+\omega_{0}^{2}}
$$

with ROC $\Re\{s\}<1$. Therefore, using transform pair 6 in Table 9.2 and the two transform pairs derived here, the impulse response of the system is given by

$$
h(t)=-\frac{25}{13} e^{-2 t} u(t)-\frac{25}{13} e^{t} \cos (2 t) u(-t)+\frac{5}{13} e^{t} \sin (2 t) u(-t)
$$

This is clearly not a causal system.

Problem 6 (LTI System Analysis.)
If $x(t)=e^{2 t}$ produces $y(t)=(1 / 6) e^{2 t}$, then $H(2)=1 / 6$. By taking the Laplace transform of both sides of the differential equation, we find that

$$
H(s)=\frac{\frac{1}{s+4}+b \frac{1}{s}}{s+2}=\frac{s+b(s+4)}{s(s+4)(s+2)}
$$

Substituting in $H(2)=1 / 6$, we find that $b=1$. Therefore,

$$
H(s)=\frac{2(s+2)}{s(s+4)(s+2)}=\frac{2}{s(s+4)}
$$

Problem 7 (LTI System Analysis.)
(a) The overall system function $H(s)$ is equal to $H_{1}(s) \cdot H_{2}(s)$, because the two systems are cascaded together. Using Table 9.2 in OWN,

$$
H_{1}(s)=\frac{1}{s+2} \quad \Re\{s\}>-2
$$

$H_{2}(s)$ is found by taking the Laplace transform of the differential equation characterizing System 2

$$
\begin{gathered}
s Y(s)+Y(s)=s W(s)+\alpha W(s) \\
H_{2}(s)=\frac{Y(s)}{W(s)}=\frac{s+\alpha}{s+1} \quad \Re\{s\}>-1
\end{gathered}
$$

The ROC must be $\Re\{s\}>-1$, and not $\Re\{s\}<-1$, because we are given that System 2 is causal. Thus, the system function is given by

$$
H(s)=\frac{s+\alpha}{(s+2)(s+1)} \quad \Re\{s\}>-1
$$

Finally, we can solve for α by using the fact that an input $x(t)=e^{3 t}$ produces an output $y(t)=0$. This means that $H(3)=0$. Thus

$$
\frac{3+\alpha}{(5)(4)}=0
$$

which means that $\alpha=-3$. The overall system function is given by

$$
H(s)=\frac{s-3}{(s+2)(s+1)} \quad \Re\{s\}>-1
$$

The pole-zero plot is shown below.

(b) The differential equation relating $x(t)$ and $y(t)$ can be found by using the fact that $H(s)=\frac{Y(s)}{X(s)}$

$$
Y(s)(s+2)(s+1)=X(s)(s-3)
$$

Distributing on both sides of the equation gives

$$
s^{2} Y(s)+3 s Y(s)+2 Y(s)=s X(s)-3 X(s)
$$

Taking the inverse Laplace transform, we find that

$$
\frac{d^{2} y(t)}{d t^{2}}+3 \frac{d y(t)}{d t}+2 y(t)=\frac{d x(t)}{d t}-3 x(t)
$$

