
EECS 120 Signals & Systems University of California, Berkeley: Fall 2007
Ramchandran November 15, 2007

Homework 11

Due: Thursday, November 29, 2007, at 5pm
Homework GSI: Mary Knox

Reading OWN Chapter 9.8-9.9, 11.1-11.2, 10.

Problem 1 (Unilateral Laplace Transform.)

OWN Problem 9.65

Problem 2 (Pole/Zero Plots)

Match the pole/zero plots (a)-(e) with the corresponding magnitude responses (1)-(5). In each case,
provide a brief justification. (For example: “must have two symmetric peaks, therefore can only be plot
(x)”.)
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Figure 1: Matching of Pole/Zero Plots and Frequency response.

Problem 3 (A simple feedback control system)

One of the key applications of the Laplace transform is the control of feedback systems. Consider the
following simple causal feedback system.

The second box, s+2

s−1
, models an industrial plant. This system is unstable. The task of the engineer is

to design the controller F (s) in a clever way. The overall goal of the control is to make the error signal
e(t) = 0 .
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x(t) - i -e(t)
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Figure 2: A simple feedback system

(a) Determine the overall transfer function

T (s) =
Y (s)

X(s)
(1)

and show that the Laplace transform of the error signal satisfies

E(s) = (1 − T (s))X(s). (2)

(b) Suppose that F (s) = K , where K is a real number. Determine the range of K such that the overall
system T (s) is stable. (Recall that we assume the system to be casual.)

Problem 4 (Bode Plots)

As we have seen in class, the Bode plot of a frequency response is simply the plot

|H(jω)|dB

def
= 20 log10 |H(jω)|. (3)

(a) In this problem, we use Matlab to confirm Bode’s approximation. Consider the system with transfer
function

H(s) =
1

1 + s/10
. (4)

You may use the following Matlab code:
w = [ 0.1:0.1:1000 ];

semilogx(w, 20*log10(abs(1./(1 + j*w/10))));

grid;

Print out the resulting plot, and add (with a color pen) the approximation that we have seen in class.

Then repeat this exercise for the phase, using the approximation in Handout 3 and the following Matlab
code:
w = [ 0.1:0.1:1000 ];

semilogx(w, angle(1./(1 + j*w/10)));

grid;

(b) Repeat Part (a) for the second-order system

H(s) =
1

1 + s/20 + (s/10)2
. (5)
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For the phase response, use the approximation for very small ω and for very large ω .

(c) By hand (without using Matlab), provide the Bode plot of the magnitude of the frequency response
of the system with transfer function

H(s) =
(s + 1)(s + 1000)

(s + 10)(s + 100)
. (6)

Describe the system behavior in words.

Hint: Confirm your result using Matlab, but be sure you know how to do it by hand — after all, that’s
the main point of Bode plots.

Problem 5 (z-Transform Basics.)

(a) OWN 10.22 (b), (d)

(b) OWN 10.23, the first and second X(z). No need to do the Taylor series method.

Problem 6 (Properties of the z-Transform)

OWN 10.45

Problem 7 (Discrete-time LTI system analysis.)

A causal LTI system is described by the following system diagram, where b is a real number:
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Figure 3: A causal discrete-time system.

Find the pole-zero plot and the range of b such that the system is stable.

Problem 8 (Discrete-time LTI system.)

OWN Problem 10.34

Problem 9 (Discrete-time LTI system analysis.)

OWN Problem 10.46

Problem 10 (Pole/Zero plots.)

Match the pole/zero plots (a)-(e) with the corresponding magnitude responses (1)-(5). Provide a brief
justification for each case. (Example: “must have 2 symmetric peaks, therefore can only be plot (x) ”.)
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Figure 4: Matching of pole/zero plots and frequency responses.

4


