Ramchandran

Homework 12 Solutions

Problem 1

Problem 5

OWN 10.44 (a)

By the time shifting and linearity properties in OWN Table 10.1, the z-transform of

$$
x_{a}[n]=x[n]-x[n-1]
$$

is

$$
X_{a}(z)=X(z)-z^{-1} X(z)=\frac{z-1}{z} X(z)
$$

with ROC R with the possible deletion of $z=0$.
OWN 10.44 (b)
We can find the z-transform of

$$
x_{b}[n]= \begin{cases}x\left[\frac{n}{2}\right] & n \text { even } \\ 0 & n \text { odd }\end{cases}
$$

by using the time expansion property in OWN Table 10.1, as

$$
X_{b}(z)=X\left(z^{2}\right) \quad \text { with ROC } \quad R^{1 / 2}=\left\{z: z^{2} \in R\right\}
$$

Alternatively, we can find the z-transform by evaluating the definition

$$
\begin{aligned}
X_{b}(z) & =\sum_{n=-\infty}^{\infty} x_{b}[n] z^{-n} \\
& =\sum_{n \text { even }} x\left[\frac{n}{2}\right] z^{-n} \\
& =\sum_{m=-\infty}^{\infty} x[m] z^{-2 m} \\
& =X\left(z^{2}\right)
\end{aligned}
$$

OWN 10.44 (c)
Define

$$
g[n]=\frac{1}{2}\left(x[n]+(-1)^{n} x[n]\right)
$$

Observe that $g[2 n]=x[2 n]$, and that $g[n]=0$ for n odd. By the scaling in the z-domain property and the linearity property in OWN Table 10.1, the z-transform of $g[n]$ is $G(z)=\frac{1}{2} X(z)+\frac{1}{2} X(-z)$, with ROC R. Now we find the z-transform of $x_{c}[n]=x[2 n]$ by evaluating the definition of the z-transform,

$$
\begin{aligned}
X_{c}(z) & =\sum_{n=-\infty}^{\infty} x_{c}[n] z^{-n} \\
& =\sum_{n=-\infty}^{\infty} x[2 n] z^{-n} \\
& =\sum_{n=-\infty}^{\infty} g[2 n] z^{-n} \\
& =\sum_{m \text { even }} g[m] z^{-m / 2} \\
& =\sum_{m=-\infty}^{\infty} g[m] z^{-m / 2} \\
& =G\left(z^{1 / 2}\right) \\
& =\frac{1}{2} X\left(z^{1 / 2}\right)+\frac{1}{2} X\left(-z^{1 / 2}\right)
\end{aligned}
$$

and the ROC is R.
Problem 2(Discrete-time LTI system analysis)
OWN 10.47

- (a)

From Clue 1, we know that $H(-2)=0$. From Clue 2, we know that when

$$
X(z)=\frac{1}{1-\frac{1}{2} z^{-1}}, \quad|z|>\frac{1}{2}
$$

then

$$
Y(z)=1+\frac{a}{1-\frac{1}{4} z^{-1}}=\frac{1-\frac{1}{4} z^{-1}+a}{1-\frac{1}{4} z^{-1}}, \quad|z|>\frac{1}{4}
$$

Therefore,

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{\left(1-\frac{1}{4} z^{-1}+a\right)\left(1-\frac{1}{2} z^{-1}\right)}{1-\frac{1}{4} z^{-1}}, \quad|z|>\frac{1}{4}
$$

Substituting $z=-2$ into this equation, and using the fact that $H(-2)=0$, we find that

$$
a=-\frac{9}{8}
$$

- (b)

The response to the signal $x[n]=1=1^{n}$ will be $y[n]=H(1) x[n]$.

$$
y[n]=H(1)=-\frac{1}{4}
$$

Problem 3(z-transform properties: Filter banks)
Parts (a) and (b) are shown in the following figure.

Recall from HW 10 that $b_{i}[n]=a_{i}[2 n]$ so $B_{i}(z)=\frac{1}{2} A_{i}\left(z^{\frac{1}{2}}\right)+\frac{1}{2} A_{i}\left(-z^{\frac{1}{2}}\right)$ and $c_{i}[n]=\left\{\begin{array}{ll}b_{i}\left[\frac{n}{2}\right] & n \text { even } \\ 0 & n \text { odd }\end{array} \quad\right.$ so $C_{i}(z)=B_{i}\left(z^{2}\right)$ for $i=0,1$.

Combining these two equations, we get that $C_{i}(z)=\frac{1}{2} A_{i}\left(\left(z^{2}\right)^{\frac{1}{2}}\right)+\frac{1}{2} A_{i}\left(-\left(z^{2}\right)^{\frac{1}{2}}\right)$

$$
C_{i}(z)=\frac{1}{2} A_{i}(z)+\frac{1}{2} A_{i}(-z)
$$

Continued on nest page...

$$
\begin{aligned}
& A_{1}(z)=H_{1}(z) X(z) \Rightarrow C_{1}(z)=\frac{1}{2} H_{1}(z) X(z)+\frac{1}{2} H_{1}(-z) X(-z) \\
& A_{0}(z)=H_{0}(z) \times(z) \quad C_{0}(z)=\frac{1}{2} H_{0}(z) X(z)+\frac{1}{2} H_{0}(-z) X(-z) \\
& Y(z)=G_{0}(z) C_{0}(z)+G_{1}(z) C_{1}(z) \\
& Y(z)=\frac{1}{2} H_{0}(z) G_{0}(z) X(z)+\frac{1}{2} H_{0}(-z) G_{0}(z) X(-z)+\frac{1}{2} H_{1}(z) G_{1}(z) \times(z)+\frac{1}{2} H_{1}(-z) G_{1}(z) X(z)
\end{aligned}
$$

Lat's group terms with respect to $X(z)$ and $x(-z)$.

$$
Y(z)=\frac{1}{2}\left[H_{0}(z) G_{0}(z)+H_{1}(z) G_{1}(z)\right] X(z)+\frac{1}{2}\left[H_{0}(-z) G_{0}(z)+H_{1}(-z) G_{1}(z)\right] X(-z)
$$

b) We would like to find conditions on H_{0}, G_{0}, H_{1}, and G_{1} such that $Y(z)$ is exactly equal to $X(z)$. Well, if we use the following two conditions, we will get $Y(z)=X(z)$:

1) $H_{0}(z) G_{0}(z)+H_{1}(z) G_{1}(z)=2$
2) $H_{0}(-z) G_{0}(z)+H_{1}(-z) G_{1}(z)=0$
aside: we could, of course, make stricter conditions for each filter individually. However, that would exclude possible solutions that our more general conditions allow. Also, note that $X(-z)$ is the "aliased" version of $X(z)$. This is easier to see in a plot of the DTFT of $x(z)$ and $x(-z)$ for some sample signal x.

$$
X\left(e^{j \omega}\right)=\left.X(z)\right|_{z=e^{j \omega}}
$$

$$
X\left(e^{j(\omega+\pi)}\right)=\left.X(-z)\right|_{z=e^{j \omega}} \quad\left(\text { since }-1=e^{j \pi}\right)
$$

$$
\sim_{-\pi}^{\sim}
$$

Note that in $X(-z)$ the low frequencies have become high frequencies and vice versa. Mixing $X(z)$ and $X(-z)$ will result in an extremely distorted version of ow r desired signal, $X(-2)$. That is why we thy to zero out $X(-2)$.

Problem 4 (Filter design.)

(a)

$$
\begin{aligned}
H(j \omega) H(-j \omega) & =|H(j \omega)|^{2}=\frac{1}{\left(1+(j(\omega-4))^{2 K}\right)\left(1+(j(\omega+4))^{2 K}\right)} \\
H(s) H(-s) & =\frac{1}{\left(1+(s-4 j)^{2 K}\right)\left(1+(s+4 j)^{2 K}\right)}
\end{aligned}
$$

We want to find the poles of $H(s) H(-s)$. To do so, we first define $p=s-4 j$ and $q=s+4 j$, and solve for the poles in terms of p and q.

$$
H(s) H(-s)=\frac{1}{\left(1+p^{2 K}\right)\left(1+q^{2 K}\right)}
$$

Since the roots of $1+p^{2 K}=0$ and $1+q^{2 K}=0$ are the same, it is sufficient to solve for the roots of one of these polynomials.

$$
\begin{aligned}
1+p^{2 K} & =0 \\
e^{j 2 \pi n}+p^{2 K} & =0 \\
p^{2 K} & =-e^{j 2 \pi n}=e^{j(2 \pi n+\pi)} \\
p & =e^{j\left(\frac{\pi n}{K}+\frac{\pi}{2 K}\right)} \text { for } n=0,1, \ldots, 2 K-1
\end{aligned}
$$

We plug the $2 K$ unique roots at p and q back into $p=s-4 j$ and $q=s+4 j$. Therefore the roots of $H(s) H(-s)$ are at

$$
s=e^{j\left(\frac{\pi n}{K}+\frac{\pi}{2 K}\right)} \pm 4 j
$$

for $n=0,1, \ldots, 2 K-1$.
For $K=2, H(s) H(-s)$ has poles at $s=e^{j \pi / 4} \pm 4 j, s=e^{j 3 \pi / 4} \pm 4 j, s=e^{j 5 \pi / 4} \pm 4 j=e^{-j 3 \pi / 4} \pm 4 j$, and $s=e^{j 7 \pi / 4} \pm 4 j=e^{-j \pi / 4} \pm 4 j$.

(b)

For $K=2$, we would like to find a real-valued, stable and causal filter that satisfies $|H(j \omega)|^{2}$. In other words $H(s)$ must contain poles such that, when combined with their complex conjugates form exactly $|H(j \omega)|^{2}$. A rational $H(s)$ is causal iff its ROC is the right-half plane, to the right of the pole largest in
magnitude. $H(s)$ is stable iff its ROC includes the $j \omega$-axis. Thus all the poles of $H(s)$ must be left of the $j \omega$-axis (e.g. $R e(s)<0)$. So we make the poles of $H(s): s=e^{j 3 \pi / 4} \pm 4 j$ and $s=e^{-j 3 \pi / 4} \pm 4 j$.

$$
\begin{aligned}
H(s) & =\frac{1}{\left(s-e^{j \frac{3 \pi}{4}}-4 j\right)\left(s-e^{j \frac{3 \pi}{4}}+4 j\right)\left(s-e^{-j \frac{3 \pi}{4}}-4 j\right)\left(s-e^{-j \frac{3 \pi}{4}}+4 j\right)} \\
\frac{1}{H(s)} & =\left(\left(s-e^{j \frac{3 \pi}{4}}\right)^{2}+16\right)\left(\left(s-e^{-j \frac{3 \pi}{4}}\right)^{2}+16\right) \\
& =\left(s-e^{j \frac{3 \pi}{4}}\right)^{2}\left(s-e^{-j \frac{3 \pi}{4}}\right)^{2}+16\left(s-e^{j \frac{3 \pi}{4}}\right)^{2}+16\left(s-e^{-j \frac{3 \pi}{4}}\right)^{2}+256 \\
& =\left(s^{2}-2 e^{j \frac{3 \pi}{4}} s+e^{j \frac{3 \pi}{2}}\right)\left(s^{2}-2 e^{-j \frac{3 \pi}{4}} s+e^{-j \frac{3 \pi}{2}}\right)+16\left(s^{2}-2 e^{j \frac{3 \pi}{4}} s+e^{j \frac{3 \pi}{2}}\right)+16\left(s^{2}-2 e^{-j \frac{3 \pi}{4}} s+e^{-j \frac{3 \pi}{2}}\right)+256 \\
& =\left(s^{4}-2 e^{-j \frac{3 \pi}{4}} s^{3}+j s^{2}-2 e^{j \frac{3 \pi}{4}} s^{3}+4 s^{2}-2 e^{-j \frac{3 \pi}{4}} s-j s^{2}-2 e^{j \frac{3 \pi}{4}} s+1\right)+32 s^{2}+32 \sqrt{2} s+256 \\
& =s^{4}+2 \sqrt{2} s^{3}+36 s^{2}+34 \sqrt{2} s+257
\end{aligned}
$$

Now we use the Laplace transform properties (see OWN Table 9.1) to find the difference equation that describes this filter.

$$
\begin{aligned}
Y(s) & =H(s) X(s) \\
\left(s^{4}+2 \sqrt{2} s^{3}+36 s^{2}+34 \sqrt{2} s+257\right) Y(s) & =X(s) \\
\frac{d^{4}}{d t^{4}} y(t)+2 \sqrt{2} \frac{d^{3}}{d t^{3}} y(t)+36 \frac{d^{2}}{d t^{2}} y(t)+34 \sqrt{2} \frac{d}{d t} y(t)+257 y(t) & =x(t)
\end{aligned}
$$

(c)

The magnitude response of the filter $H(s)$ will have a peak at $\omega=4$ and at $\omega=-4$, because that is where we are closest to the poles as we traverse the $j \omega$-axis.

Problem 5 (Trapdoor and Fibonacci Numbers)
Use the solutions of Optional problem in Homework 2, and what follows for finding the value for each n. Parts (a) and (b) are shown in the following figure.
(6)
a) $F_{1}=1 \quad F_{2}=1 \quad F_{n+2}=F_{n+1}+F_{n} \quad \forall n \geq 1$

We would like to find an explicit formula for F_{n}. We can use the unilateral z-transform to find it. One consequence of this method is that our function will be $0 \forall n<0$. We would like a function that con generate F_{1} onwards so let's set $x[n]=F_{n+1}$ so that $x[0]=F_{1}$.

$$
\begin{array}{rlr}
x[n+1]=x[n]+x[n-1] & \frac{\text { Recall from Table } 10.3:}{} \begin{array}{ll}
4 z & x[n-1] \xrightarrow{u z} z^{-1} x(z)+x[-1] \\
& x[n+1] \xrightarrow{u z} z \times(z) \quad z \times[0]
\end{array}
\end{array}
$$

$z X(z)-z \times[0]=X(z)+z^{-1} X(z)+x[-1] \quad$ Note that $x[-1]=F_{0}=O$ since

$$
\begin{aligned}
& z X(z)-z=X(z)+z^{-1} X(z) \\
& X(z)=\frac{z}{z-1-z^{-1}}=\frac{z}{z\left(1-z^{-1}-z^{-2}\right)}
\end{aligned}
$$

$$
F_{0}+F_{1}=F_{2}
$$

$$
X(z)=\frac{1}{1-z^{-1}-z^{-2}}=\frac{1}{\left(1-\frac{1-\sqrt{5}}{2} z^{-1}\right)\left(1-\frac{1+\sqrt{5}}{2} z^{-1}\right)}=\frac{A}{1-\frac{1+\sqrt{5}}{2} z^{-1}}+\frac{B}{1-\frac{1-\sqrt{5}}{2} z^{-1}}
$$

$$
A\left(1-\frac{1-\sqrt{5}}{2} z^{-1}\right)+B\left(1-\frac{1+\sqrt{5}}{2} z^{-1}\right)=1
$$

$$
A+B=1 \quad \Rightarrow \quad A=1-B
$$

$$
A\left(-\frac{1-\sqrt{5}}{2}\right)+B\left(-\frac{1+\sqrt{5}}{2}\right)=0
$$

$$
(1-B)\left(-\frac{1-\sqrt{5}}{2}\right)+B\left(-\frac{1+\sqrt{5}}{2}\right)=0
$$

$$
\frac{B \quad B \sqrt{5}-B \quad B \sqrt{5}}{2}=\frac{1-\sqrt{5}}{2}
$$

$$
-B \sqrt{5}=\frac{1-\sqrt{5}}{2}
$$

$$
\therefore \quad x(z)=\frac{5+\sqrt{5}}{10}\left(\frac{1}{1-\frac{1+\sqrt{5}}{2} z^{-1}}\right)+\frac{5-\sqrt{5}}{10}\left(\frac{1}{1-\frac{1-\sqrt{5}}{2} z^{-1}}\right)
$$

$$
\begin{aligned}
& B=\frac{-1+\sqrt{5}}{2 \sqrt{5}}=\frac{5-\sqrt{5}}{10} \\
& A=1-\frac{5-\sqrt{5}}{10}=\frac{5+\sqrt{5}}{10}
\end{aligned}
$$

Continued on next page...

$$
\begin{aligned}
x(z)= & \frac{5+\sqrt{5}}{10}\left(\frac{1}{1-\frac{1+\sqrt{5}}{2} z^{-1}}\right)+\frac{5-\sqrt{5}}{10}\left(\frac{1}{1-\frac{1-\sqrt{3}}{2} z^{-1}}\right) \text { Recall: } \frac{1}{1-a z^{-1}} \xrightarrow{u z^{-1}} a^{n} u[n] \\
& \left\lfloor u z^{-1}\right. \\
x[n]= & \frac{5+\sqrt{5}}{10}\left(\frac{1+\sqrt{5}}{2}\right)^{n} u[n]+\frac{5-\sqrt{5}}{10}\left(\frac{1-\sqrt{5}}{2}\right)^{n} u[n]
\end{aligned}
$$

$F_{n}=x[n-1]$ by definition.

$$
F_{n}=\frac{5+\sqrt{5}}{10}\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}+\frac{5-\sqrt{5}}{10}\left(\frac{1-\sqrt{5}}{2}\right)^{n-1} \quad n \geq 1
$$

Note that there are many different possible formulas for $x[n]$ and thus for F_{n}. They differ based on what we choose for our "sturting point" at $n=0$.
b) $F_{21}=10946$

