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Homework 4 Solution
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(Submit your grades to ee120.gsi@gmail.com)

Problem 1 (Properties of the CTFS.)

• 3.46(a)

ck =
1

T

∫

T

z(t)e−jkω0tdt

=
1

T

∫

T

( ∞
∑

n=−∞
anejnω0t

)( ∞
∑

m=−∞
bmejmω0t

)

e−jkω0tdt

=

∞
∑

n=−∞

∞
∑

m=−∞
anbm

(

1

T

∫

T

ej(n+m−k)ω0tdt

)

For fixed values of k and n , if m = k − n , then

1

T

∫

T

ej(n+m−k)ω0tdt =
1

T

∫

T

dt = 1

If m 6= k − n , then set ℓ = n + m − k and note that

1

T

∫

T

ej(n+m−k)ω0tdt =
1

T

∫

T

ejℓ(2π/T )tdt =
1

jℓ2π

[

ejℓ(2π/T )t
]T

t=0
=

1

jℓ2π
(1 − 1) = 0

Thus, we see that

ck =
∞
∑

n=−∞
anbk−n

• 3.46(b) The signal in Figure P3.46(a) has a fundamental period of T = 3 , and ω0 = 2π
3 .

We can observe that x1(t) = x(t)y(t) , where x(t) = cos(20πt) and y(t) is a periodic square wave.

x(t) = cos(20πt) =
1

2
ej20πt +

1

2
e−j20πt =

1

2
ej30ω0t +

1

2
e−j30ω0t

This means that a30 = a−30 = 1
2 and ak = 0 for all other k . We can write this as

ak = 1
2δ(k − 30) + 1

2δ(k + 30) .

By looking at Example 3.5 on page 193 of OWN, we see that the Fourier series coefficients bk

corresponding to y(t) are given by b0 = 2
3 and bk = sin(kω0)

kπ when k 6= 0 . Applying the convolution
formula from part 3.46(a), we find that
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ck =
sin((k − 30)2π/3)

2(k − 30)π
+

sin((k + 30)2π/3)

2(k + 30)π
k 6= 30,−30

c30 = c−30 =
1

3

• 3.46(c) Suppose that y(t) = x∗(t) . Then z(t) = x(t)y(t) = |x(t)|2 . From Table 3.1 in OWN, we
see that the Fourier series coefficients of y(t) are given by bk = a∗

−k . Using 3.46(a), we find that

ck =

∞
∑

n=−∞
anbk−n =

∞
∑

n=−∞
ana∗

n−k

From the Fourier representation of z(t) , we have

ck =
1

T

∫ T

0

|x(t)|2e−jω0ktdt =

∞
∑

n=−∞
ana∗

n−k

Evaluating this equation at k = 0 , we get

1

T

∫ T

0

|x(t)|2dt =

∞
∑

n=−∞
|an|

2

Problem 2 (Properties of the CTFS.)

Because x(t) has fundamental period T , we know that x(t) = x(t + T ) . The Fourier coefficients ak are
given by

ak =
1

T

∫ T

0

x(t)e−jk(2π/T )tdt

The Fourier coefficients bk are given by

bk =
1

2T

∫ 2T

0

x(t)e−jk(2π)/(2T )tdt

=
1

2T

∫ T

0

x(t)e−j(k/2)(2π/T )tdt +
1

2T

∫ 2T

T

x(t)e−j(k/2)(2π/T )tdt

In the second integral, we make the change of variable t = τ + T , and then make use of the periodicity
of x(t) .

bk =
1

2T

∫ T

0

x(t)e−j(k/2)(2π/T )tdt +
1

2T

∫ T

0

x(τ + T )e−j(k/2)(2π/T )(τ+T )dτ

=
1

2T

∫ T

0

x(t)e−j(k/2)(2π/T )tdt +
1

2T
e−jkπ

∫ T

0

x(τ)e−j(k/2)(2π/T )τ dτ

=
1 + (−1)k

2T

∫ T

0

x(t)e−j(k/2)(2π/T )tdt
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Observe that if k is odd, then 1 + (−1)k = 0 , and therefore bk = 0 . If k is even, then 1 + (−1)k = 2 .
By comparing the equations for bk and ak , we see that bk = ak/2 when k is even.

Problem 3 (Properties of the DTFS.)

• (a) OWN 3.48(a). The Fourier series coefficients of x[n − n0] can be written as

âk =
1

N

∑

n=〈N〉
x[n − n0]e

−j2πnk/N

=
1

N
e−j2πn0k/N

∑

n=〈N〉
x[n − n0]e

−j2π(n−n0)k/N

= e−j2πn0k/N 1

N

∑

m=〈N〉
x[m]e−j2π(m)k/N

= e−j2πn0k/Nak

• (b) OWN3.48(e). The Fourier series coefficients of x∗[−n] are given by

âk =
1

N

∑

n=〈N〉
x∗[−n]e−j2πnk/N

=





1

N

∑

n=〈N〉
x[−n]ej2πnk/N





∗

=





1

N

∑

m=〈N〉
x[m]e−j2πmk/N





∗

= a∗
k

Problem 4 (Properties of the DTFS.)

• (a) OWN 3.48(f). We first observe that when N is even,

(−1)nx[n] = ejπnx[n] = ej(N/2)(2π/N)nx[n]

Now, we can apply the frequency shifting property of the DTFS from Table 3.2, and we see that
the Fourier series coefficients of (−1)nx[n] are given by

âk = ak−N/2

• (b) OWN 3.48(h). We can write y[n] as

y[n] =
1

2
x[n] +

1

2
(−1)nx[n]

To solve this problem, we must consider two separate cases, when N is even and when N is odd.

Case 1: If N is even, then (−1)nx[n] has period N , and therefore y[n] also has period N . Using
the result from 3.48(e), we know that the Fourier series coefficients of (−1)nx[n] are given by

bk = ak−N/2
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Finally, using the linearity of the DTFS, the Fourier series coefficients of y[n] are given by

âk =
1

2
(ak + ak−N/2)

Case 2: If N is odd, on the other hand, then (−1)nx[n] will have period 2N , and therefore y[n]
will also have period 2N .

First, we must find the Fourier series coefficients of x[n] , when x[n] is considered to be periodic
with period 2N . (This is the discrete time version of Problem 2 in this assignment.) We will label
these Fourier coefficients ck

ck =
1

2N

2N
∑

n=1

x[n]e−jkn(2π)/(2N)

=
1

2N

N
∑

n=1

x[n]e−j(k/2)n(2π/N) +
1

2N

2N
∑

n=N+1

x[n]e−j(k/2)n(2π/N)

=
1

2N

N
∑

n=1

x[n]e−j(k/2)n(2π/N) +
1

2N
e−jkπ

N
∑

m=1

x[m]e−j(k/2)m(2π/N)

=
1 + (−1)k

2N

N
∑

n=1

x[n]e−j(k/2)n(2π/N)

where we have made the change of variable n = m + N in the second summation, and used the
periodicity of x[n] . From the last equation, we see that ck = ak/2 for k even, and ck = 0 for k
odd.

Next, we find the Fourier series coefficients of (−1)nx[n]

bk =
1

2N

∑

n=〈2N〉
ejπnx[n]e−jk2π/(2N)n

=
1

2

1

N

2N
∑

n=1

x[n]e−j2πn((k−N)/2)/N

=
1

2

1

N

N
∑

n=1

x[n]
(

e−j2πn((k−N)/2)/N + e−j2π(n+N)((k−N)/2)/N
)

=
1

2

1

N

N
∑

n=1

x[n]
(

e−j2πn((k−N)/2)/N + e−j2πn((k−N)/2)/Ne−j2π((k−N)/2)
)

In the second to last step, we have used the fact that the period of x[n] is N .

If k is odd, then k − N is even and (k − N)/2 is an integer. This means that

e−j2π((k−N)/2) = 1

and that bk is given by

bk =
1

2

1

N

N
∑

n=1

x[n]
(

2e−j2πn((k−N)/2)/N
)

= a(k−N)/2
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If k is even, then k − N is odd, which means that

e−j2π((k−N)/2) = −1

and we see that bk = 0

Finally, using the linearity of the DTFS, the Fourier series coefficients of y[n] are given by âk =
(ck + bk)/2

âk =

{

1
2a(k−N)/2 k odd

1
2ak/2 k even

Note: It is important that we first find the coefficients of x[n] using the period 2N . When we use
the linearity of the DTFS to find the coefficients of h[n] = f [n] + g[n] , the coefficients of f [n] and
g[n] must be computed using the same period.

Problem 5 (FT.)

• (a)

OWN 4.22(e)

x(t) =
1

2π

∫ ∞

−∞
X(jω)ejωtdω

=
1

2π

(∫ −2

−3

−ejωtdω +

∫ −1

−2

(ω + 1)ejωtdω +

∫ 2

1

(ω − 1)ejωtdω +

∫ 3

2

ejωtdω

)

∫ −2

−3

−ejωtdω =

[

−1

jt
ejωt

]−2

ω=−3

= −
1

jt
e−j2t +

1

jt
e−j3t

∫ −1

−2

(ω + 1)ejωtdω =

[

(ω + 1)
1

jt
ejωt

]−1

ω=−2

−

∫ −1

−2

1

jt
ejωtdω

= 0 +
1

jt
e−j2t +

[

1

t2
ejωt

]−1

ω=−2

=
1

jt
e−j2t +

1

t2
e−jt −

1

t2
e−j2t

∫ 2

1

(ω − 1)ejωtdω =

[

(ω − 1)
1

jt
ejωt

]2

ω=1

−

∫ 2

1

1

jt
ejωtdω

=
1

jt
ej2t − 0 +

[

1

t2
ejωt

]2

ω=1

=
1

jt
ej2t +

1

t2
ej2t −

1

t2
ejt
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∫ 3

2

ejωtdω =

[

1

jt
ejωt

]3

ω=2

=
1

jt
ej3t −

1

jt
ej2t

x(t) =
1

j2πt
e−j3t +

1

j2πt
ej3t +

1

2πt2
e−jt −

1

2πt2
ejt −

1

2πt2
e−j2t +

1

2πt2
ej2t

=
cos(3t)

jπt
+

sin(t)

jπt2
−

sin(2t)

jπt2

• (b)

OWN 4.23(a) For the given signal x0(t) , the Fourier transform is given by

X0(jω) =

∫ 1

0

e−te−jωtdt

=

∫ 1

0

e−(1+jω)tdt

=

[

−1

1 + jω
e−(1+jω)t

]1

t=0

=
1 − e−(1+jω)

1 + jω

We know that x1(t) = x0(t) + x0(−t) . Using the linearity and time reversal properties of the
Fourier transform, we have

X1(jω) = X0(jω) + X0(−jω)

=
1 − e−(1+jω)

1 + jω
+

1 − e−(1−jω)

1 − jω

=
(1 − e−(1+jω))(1 − jω) + (1 − e−(1−jω))(1 + jω)

1 + ω2

=
1 − e−1e−jω − jω + jωe−1e−jω + 1 − e−1ejω + jω − jωe−1ejω

1 + ω2

=
2 − 2e−1 cos(ω) + 2ωe−1 sin(ω)

1 + ω2

OWN 4.23(b) We know that x2(t) = x0(t) − x0(−t) . Using the linearity and time reversal properties of the
Fourier transform, we have
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X2(jω) = X0(jω) − X0(−jω)

=
1 − e−(1+jω)

1 + jω
−

1 − e−(1−jω)

1 − jω

=
(1 − e−(1+jω))(1 − jω) − (1 − e−(1−jω))(1 + jω)

1 + ω2

=
1 − e−1e−jω − jω + jωe−1e−jω − 1 + e−1ejω − jω + jωe−1ejω

1 + ω2

=
2je−1 sin(ω) − 2jω + 2jωe−1 cos(ω)

1 + ω2

= j

[

−2ω + 2e−1 sin(ω) + 2ωe−1 cos(ω)

1 + ω2

]

Problem 6 (FT.)

• (a) OWN 4.29, only signals xa(t) and xc(t)

We can express the Fourier transform of xa(t) as

Xa(jω) = |Xa(jω)|ej∠Xa(jω)

= |X(jω)|ej(∠X(jω)−aω)

= |X(jω)|ej∠X(jω)−jaω

= X(jω)e−jaω

Using the time shifting property in Table 4.1, we see that xa(t) = x(t − a) .

Similarly, we can express the Fourier transform of xc(t) as

Xc(jω) = |Xc(jω)|ej∠Xc(jω)

= |X(jω)|e−j∠X(jω)

= X∗(jω)

Using the conjugation and time reversal properties in Table 4.1, we see that xc(t) = x∗(−t) .

• (b) OWN 4.41

OWN 4.41(a)

g(t) =
1

2π

∫ ∞

−∞

1

2π
[X(jω) ⋆ Y (jω)] ejωtdω

=
1

2π

∫ ∞

−∞

1

2π

[∫ ∞

−∞
X(jθ)Y (j(ω − θ))dθ

]

ejωtdω

=
1

2π

∫ ∞

−∞
X(jθ)

[

1

2π

∫ ∞

−∞
Y (j(ω − θ))ejωtdω

]

dθ
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OWN 4.41(b) Using the frequency shifting property in Table 4.1, we see that the inverse Fourier transform
of Y (j(ω − θ)) is ejθty(t) . This means that

1

2π

∫ ∞

−∞
Y (j(ω − θ))ejωtdω = ejθty(t)

OWN 4.41(c) Combining the results from parts (a) and (b), we have

g(t) =
1

2π

∫ ∞

−∞
X(jθ)ejθty(t)dθ

= y(t)
1

2π

∫ ∞

−∞
X(jθ)ejθtdt

= y(t)x(t)

Problem 7 (FT.)

• (a) Using the third to last entry in table 4.2, the frequency response is

H(jω) =
Y (jω)

X(jω)

= 2

1
1+jω − 1

4+jω
1

1+jω + 1
3+jω

= 2
(4 + jω)(3 + jω) − (1 + jω)(3 + jω)

(4 + jω)(3 + jω) + (4 + jω)(1 + jω)

= 2
(3 + jω)(4 + jω − 1 − jω)

(4 + jω)(3 + jω + 1 + jω)

=
3(3 + jω)

(4 + jω)(2 + jω)

• (b) First, we take a partial fraction expansion of H(jω)

H(jω) =
3(3 + jω)

(4 + jω)(2 + jω)
=

A

4 + jω
+

B

2 + jω

3(3 + jω) = A(2 + jω) + B(4 + jω)

Setting ω = −2/j , we find that B = 3/2 . Setting ω = −4/j , we find that A = 3/2 . Using the
same entry of Table 4.2, we find that the inverse Fourier transform of H(jω) is

h(t) =
3

2

(

e−4t + e−2t
)

u(t)

• (c) From part (a), we have

Y (jω)

X(jω)
=

9 + 3jω

8 + 6jω + (jω)2

Cross-multiplying and taking the inverse Fourier transform, we find that

d2y(t)

dt2
+ 6

dy(t)

dt
+ 8y(t) = 3

dx(t)

dt
+ 9x(t)
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Problem 8 (Frequency response of linear time-invariant systems.)

• (a)

We are given the equation

N
∑

k=0

ak
dk

dtk
y(t) =

M
∑

m=0

bm
dm

dtm
x(t)

and we will substitute in x(t) = ejωt and y(t) = H(jω)ejωt . First, note that

d

dt
ejωt = jωejωt

which generalizes to

dk

dtk
ejωt = (jω)kejωt

We find that

N
∑

k=0

akH(jω)(jω)kejωt =

M
∑

m=0

bm(jω)mejωt

N
∑

k=0

akH(jω)(jω)k =
M
∑

m=0

bm(jω)m

H(jω) =

∑M
m=0 bm(jω)m

∑N
k=0 ak(jω)k

• (b)

Using the result from part (a), we see that for this equation N = 1 , a1 = 2 , a0 = 6 , M = 0 , and
b0 = 1 . The frequency response is given by

H(jω) =
1

6 + 2jω
=

0.5

3 + jω

The impulse response can be found by using the basic transform pairs in table 4.2

h(t) =
1

2
e−3tu(t)

When the input is

x(t) = sin(t/4) =
1

2j

[

ejt/4 − e−jt/4
]

then the output is given by

y(t) =
1

2j

[

H(j(1/4))ej(1/4)t − H(j(−1/4))ej(−1/4)t
]

=
1

2j

[

1

6 + j0.5
ej(1/4)t −

1

6 − j0.5
ej(−1/4)t

]
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Now, we write 1
6+j0.5 = rejθ , where r = 1√

36.25
and θ = − arctan(1/12)

y(t) =
1

2j

[

rejθej(1/4)t − re−jθej(−1/4)t
]

=
1

2j

[

rej(t/4+θ) − re−j(t/4+θ)
]

= r sin(t/4 + θ)
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