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Homework 5 Solutions

Problem 1 (DTFT.)

• (a) OWN 5.21(e)

x[n] =
(

1
2

)|n|
cos(π

8 (n − 1))

X(ejω) =

∞
∑

n=−∞

x[n]e−jωn

=

∞
∑

n=−∞

(0.5)|n| cos[π(n − 1)/8]e−jωn

=

−1
∑

n=−∞

(0.5)−n0.5(ejπ(n−1)/8 + e−jπ(n−1)/8)e−jωn +

∞
∑

n=0

(0.5)n0.5(ejπ(n−1)/8 + e−jπ(n−1)/8)e−jωn

= 0.5

−1
∑

n=−∞

e−jπ/8(0.5e−jπ/8ejω)−n + 0.5

−1
∑

n=−∞

ejπ/8(0.5ejπ/8ejω)−n + 0.5

∞
∑

n=0

e−jπ/8(0.5ejπ/8e−jω)n +

0.5

∞
∑

n=0

ejπ/8(0.5e−jπ/8e−jω)n

= 0.5

∞
∑

n=1

e−jπ/8(0.5e−jπ/8ejω)n + 0.5

∞
∑

n=1

ejπ/8(0.5ejπ/8ejω)n + 0.5

∞
∑

n=0

e−jπ/8(0.5ejπ/8e−jω)n +

0.5

∞
∑

n=0

ejπ/8(0.5e−jπ/8e−jω)n

=
0.25e−jπ/4ejω

1 − 0.5e−jπ/8ejω
+

0.25ejπ/4ejω

1 − 0.5ejπ/8ejω
+

0.5e−jπ/8

1 − 0.5ejπ/8e−jω
+

0.5ejπ/8

1 − 0.5e−jπ/8e−jω

• (b) OWN 5.22(a)

x[n] =
1

2π

∫ π

−π

X(ejω)ejωndω

=
1

2π

∫ π/4

−3π/4

ejωndω +
1

2π

∫ 3π/4

π/4

ejωndω

=
1

2π

[

1

jn
ejωn

]−π/4

ω=−3π/4

+
1

2π

[

1

jn
ejωn

]3π/4

ω=pi/4

=
1

j2πn

(

e−jnπ/4 − e−jn3π/4 + ejn3π/4 − ejnπ/4
)

=
1

πn
(sin(3πn/4)− sin(πn/4))

Problem 2 (More DTFT.)
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• (c) OWN 5.26(a)

First, by looking at the plots in Fig. P5.26(a), we see that X1(e
jω) possesses conjugate symmetry.

This implies that x[n] is a real valued signal.

Next, we consider a signal y[n] with DTFT Y (ejω) = ℜ{X1(e
jω)}

By the even-odd decomposition property in Table 5.1, we have that y[n] = E{x1[n]}
Then, we observe that we can express X2(e

jω) as

X2(e
jω) = Y (ejω) + Y (ej(ω−2π/3)) + Y (ej(ω+2π/3))

Using the frequency shifting property of the DTFT and the linearity of the DTFT, both in Table
5.1, we have that

x2[n] = E{x1[n]}
[

1 + ej2π/3 + e−j2π/3
]

= E{x1[n]} [1 + 2 cos(2π/3)]

• (d) OWN 5.50(a)

Using the transform pairs in Table 5.2, and the time-shifting property in Table 5.1, we see that

Y (ejω) =
1

1 − 1
3e−jω

X(ejω) =
1

1 − 1
2e−jω

− 1

4

e−jω

1 − 1
2e−jω

=
1 − 1

4e−jω

1 − 1
2e−jω

We can then compute the frequency response

H(ejω) =
Y (ejω)

X(ejω)
=

1 − 1
2e−jω

(

1 − 1
3e−jω

) (

1 − 1
4e−jω

)

To find h[n] , we first find the partial fraction expansion of the frequency response

H(ejω) =
A

1 − 1
3e−jω

+
B

1 − 1
4e−jω

By setting the two expressions for H(ejω) equal, cross-multiplying, and equating the constant
terms and e−jω terms; we can solve for A = −2 and B = 3 .

Using the transform pairs in Table 5.2, we see that

h[n] = 3

(

1

4

)n

u[n] − 2

(

1

3

)n

u[n]

Now, to find the difference equation, we take the equation

Y (ejω)

X(ejω)
=

1 − 1
2e−jω

(

1 − 1
3e−jω

) (

1 − 1
4e−jω

)

and cross-multiply to show that

Y (ejω) − Y (ejω)
7

12
e−jω + Y (ejω)

1

12
e−j2ω = X(ejω) − X(ejω)

1

2
e−jω
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Taking the inverse Fourier transform, and using the time shifting property, we obtain

y[n] − 7

12
y[n − 1] +

1

12
y[n − 2] = x[n] − 1

2
x[n − 1]

Problem 3 (Fourier Representations and their interconnections.)

• (a)

We know from Table 4.2 that the inverse Fourier transform of a rectangular pulse is a sinc.

x(t) =
sin(Wt)

πt

The plot is shown at the end of this problem.

• (b)

Z(jω) is equal to X(jω) convolved with a train of pulses.

Z(ω) = X(jω) ⋆
∞
∑

k=−∞

δ(ω − 3Wk)

In the time domain, letting T = 2π
3W and using the transform pair in Table 4.2, we have

z(t) = (2π) (x(t))

(

T

2π

∞
∑

n=−∞

δ(t − nT )

)

= T
∞
∑

n=−∞

x(nT )δ(t − nT )

= T
∞
∑

n=−∞

sin(n · 2π/3)

πnT
δ(t − nT )

=

∞
∑

n=−∞

sin(n · 2π/3)

πn
δ(t − nT )

Hence, we see that z(t) is just x(t) sampled with a sampling period of T = 2π
3W . The plot is shown

at the end of this problem.

• (c)

From Table 5.2, we see that

v[n] =
sin(n · 2π/3)

πn

Hence, v[n] is the impulse train z(t) converted to a discrete time sequence.

The plots of x(t) , z(t) , and v[n] are shown here.
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Problem 4(Fourier via Matlab.)

• (a)

function [F OWN,F M,F u] = Fourier matrix(N)

4



for m=1:N,

for n=1:N,

F OWN(m,n) = 1/N*exp(-j*2*pi/N*(m-1)*(n-1));

F M(m,n) = exp(-j*2*pi/N*(m-1)*(n-1));

F u(m,n) = 1/sqrt(N)*exp(-j*2*pi/N*(m-1)*(n-1));

end

end

• (b)

For this problem, we will use the OWN indexing (the columns are numbered 0 through N − 1 ,
and the rows likewise) instead of the Matlab indexing in order to simplify the computations. Using
the the OWN indexing convention, the entry in row m , column n of Fu is equal to

1√
N

e−j2πmn/N

If we take the dot product of column n and column k of Fu , we get the following (don’t forget to
take the conjugate of the first vector):

N−1
∑

m=0

(

1√
N

e−j2πmn/N

)∗(
1√
N

e−j2πmk/N

)

=
1

N

N−1
∑

m=0

e−j2πm(k−n)/N

If k = n (which means that we are taking the dot product of a column with itself), then

N−1
∑

m=0

1

N
ej0 =

N−1
∑

m=0

1

N
= 1

Since the norm of a vector is equal to the squareroot of the dot product of the vector with itself
(see Handout 2), the columns of Fu have unit length. If ℓ = k − n 6= 0 , then

N−1
∑

m=0

1

N
e−j2πℓ/N ·m =

1

N

1 − e−j2πℓ

1 − e−j2πℓ/N
= 0

Hence, the dot product of two unique columns of Fu is equal to 0 . Combining these two facts, we
see that the columns of Fu are orthonormal.

For the matrix FM , again using the OWN indexing convention, the entry in row m , column n is

e−j2πmn/N

Now, repeating the same steps as above, we find that the dot product of column k and column n
of FM is

N−1
∑

m=0

e−j2π/N ·(k−n)m = N · δ(k − n)

So, the columns of FM are orthogonal, but have length
√

N . For the matrix FOWN , the entry in
row m , column n is

1

N
e−j2πmn/N

5



So the dot product of column k and column n of FOWN is

N−1
∑

m=0

1

N2
e−j2π/N ·(k−n)m =

1

N
· δ(k − n)

The columns of FOWN are orthogonal, but have length 1/
√

N .

Because Fu is a symmetric matrix, the rows of Fu are also orthonormal. This means that when
we multiply Fux , we are projecting the vector x onto a new orthonormal basis. The DFT is
expressing the signal in a new basis, the Fourier basis. We can think of the DFT as a change of
basis operation. This notion extends to the other Fourier transforms, which can all be viewed as
expressing the signal in terms of the Fourier basis.

• (c)

x1 = [1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0];

x2 = [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];

x3 = sin(3*pi*(0:15)/8);

x4 = exp(j*14*pi*(0:15)/16);

[ F OWN,F M,F u ] = Fourier matrix(16);

fftx1 = fft(x1.’);

fft2x1 = F M*(x1.’);

fftx2 = fft(x2.’);

fft2x2 = F M*(x2.’);

fftx3 = fft(x3.’);

fft2x3 = F M*(x3.’);

fftx4 = fft(x4.’);

fft2x4 = F M*(x4.’);

e1 = sum(abs(fftx1 - fft2x1))

e2 = sum(abs(fftx2 - fft2x2))

e3 = sum(abs(fftx3 - fft2x3))

e4 = sum(abs(fftx4 - fft2x4))

subplot(4,2,1), stem((0:15),x1)

axis([-1 16 -1.25 1.25])

ylabel(’x 1[n]’)

subplot(4,2,3), stem((0:15),x2)

axis([-1 16 -1.25 1.25])

ylabel(’x 2[n]’)

subplot(4,2,5), stem((0:15),x3)

axis([-1 16 -1.25 1.25])

ylabel(’x 3[n]’)

subplot(4,2,7), stem((0:15),real(x4))

axis([-1 16 -1.25 1.25])

ylabel(’real(x 4[n])’)

subplot(4,2,2), stem((0:15),abs(fftx1))

axis([-1 16 0 10])

ylabel(’abs(X 1[k])’)

subplot(4,2,4), stem((0:15),abs(fftx2))

axis([-1 16 0 1.25])

ylabel(’abs(X 2[k])’)

subplot(4,2,6), stem((0:15),abs(fftx3))

axis([-1 16 0 10])

ylabel(’abs(X 3[k])’)

subplot(4,2,8), stem((0:15),abs(fftx4))

axis([-1 16 0 20])
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ylabel(’abs(X 4[k])’)

We note that the four error values e1 , e2 , e3 , and e4 are all equal to 0 (or less than 10−13 ,
which is within the machine precision), so the fft function in Matlab is giving the same answers
as our matrix multiplication.

The FFTs of signals 3 and 4 make sense because if a signal can be expressed as the sum of complex
exponentials of period N , then the DTFS coefficients can be easily read off from the time-domain
signal.

The FFT of signal 2 makes sense because we know that the DTFS of a (periodic) impulse is a
constant function.
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Problem 5(Fourier Transform via Matlab.)

• Plots

T = 10;

dt = 0.01;

t = [ -T : dt : T-dt];

x1 = cos(30*t).*sinc(t).^2;

Xnotquite = fft(x1);

x = fftshift(x1);

X = fft(x);
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figure(1); plot(t,x1); ylabel(’x1’); xlabel(’t’)

figure(2); plot(real(Xnotquite)); ylabel(’Xnotquite’)

figure(3); plot(t,x); ylabel(’x’); xlabel(’t’)

figure(4); plot(real(X)); ylabel(’X’)
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• Explanation of Xnotquite

We know that the Fourier transform of (sin(πt)/(πt))
2

is a triangle. We also know that the Fourier
transform of cos(30t) is two delta functions, and that multiplying in the time domain is equivalent
to convolving in the frequency domain. Therefore, we would expect the spectrum of x(t) to be two
triangles.

However, Xnotquite actually looks like two triangular shapes multiplied by a function that alter-
nates between 1 and −1 . If you zoom in on one of the triangular pulses, you can see the oscillatory
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nature of Xnotquite more clearly. The reason for this is that Matlab does not understand that the
time origin is in the middle of x1. In fact, Matlab assumes that t = 0 is at the left edge of x1,
which means that Matlab has essentially delayed the signal x(t) by 10 time units. Time-shifting
is equivalent to multiplying by a complex exponential in the frequency domain. This means that
Xnotquite is the true spectrum multiplied by a complex exponential, which causes the oscillatory
behavior.

• Explanation of X(.)

When we use the fftshift function to produce x, Matlab swaps the left and right halves of x1.
This means that the peak of x(t) is now centered at t = 0 . (Remember that fft computes the
DTFS, which assumes that the input signal is periodic.)

Now, the spectrum X looks just like we expected, because Matlab has the signal properly aligned
with the origin.

We see that x is the original continuous-time signal x(t) sampled, where τ = 0.01 is the sampling
period. We saw in Section 7.4 that the spectrum of the sampled signal is 1

τ times the spectrum of
the continuous-time signal (see Figure 7.22). Therefore, we should multiply X by 0.01 to get the
correct amplitude values.

In addition, the two triangles should be centered at ω = 30 and ω = −30 , because the spectrum
of the term cos(30t) in x(t) has a spectrum of two impulses at ω = ±30

Problem 6 (Sampling theorem.)

• OWN 7.21(a)

The Nyquist rate for the given signal is 2× 5000π = 10000π . Therefore, to be able to recover x(t)
from xp(t) , the sampling period must be at most Tmax = (2π)/(10000π) = 2 × 10−4 sec. Since
the sampling period used is T = 10−4 < Tmax , x(t) can be recovered from xp(t)

• OWN 7.21(b)

The Nyquist rate for the given signal is 2 × 15000π = 30000π . Therefore, to be able to recover
x(t) from xp(t) , the sampling period must be at most Tmax = (2π)/(30000π) = 0.66 × 10−4 sec.
Since the sampling period used is T = 10−4 > Tmax , x(t) cannot be recovered from xp(t)

• OWN 7.21(g)

If |X(jω)| = 0 for ω > 5000π , then X(jω) = 0 for ω > 5000π . However, the question gives
us no information about whether or not there exists some ωM such that X(jω) = 0 for ω <
−ωM . Therefore, we cannot determine whether we can recover x(t) from xp(t) . (Full credit given
for answering no, since you can construct an x(t) matching the given properties that cannot be
recovered from xp(t) .)

Problem 7 (Sampling.)

• OWN 7.23(a) We can express p(t) as p(t) = p1(t) − p1(t − ∆) , where

p1(t) =

∞
∑

n=−∞

δ(t − n(2∆))

Now, using Table 4.2, the Fourier transform of p1(t) is given by

P1(jω) =
π

∆

∞
∑

k=−∞

δ

(

ω − πk

∆

)
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To find the Fourier transform of q(t) = p1(t − ∆) , we can find the Fourier series coefficients and
use equation 4.22 in OWN. The Fourier series coefficients are given by

ak =
1

T

∫

T

q(t)e−jk(2π/T )tdt =
1

2∆

∫ 2∆

0

δ(t − ∆)e−jk(π/∆)tdt =
1

2∆
e−jkπ

Using equations 4.22 and 4.23, the Fourier transform of q(t) is given by

∞
∑

k=−∞

π

∆
e−jkπδ

(

ω − πk

∆

)

Finally, using the linearity of the Fourier transform, we find that

P (jω) =
π

∆

∞
∑

k=−∞

δ

(

ω − kπ

∆

)

− π

∆

∞
∑

k=−∞

e−jkπδ

(

ω − kπ

∆

)

=
2π

∆

∑

k odd

δ

(

ω − πk

∆

)

Now, because xp(t) = x(t)p(t) , we know that Xp(jω) = 1
2π X(jω) ⋆ P (jω)

Xp(jω) =
1

∆

∑

k odd

X

(

ω − kπ

∆

)

If ∆ < π/(2ωM ) , then ωM < π/(2∆) . In this situation, the various copies of X(jω) do not overlap
in Xp(jω) . P (jω) , Xp(jω) , and Y (jω) are shown in the following figure.
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• OWN 7.23(b)

To recover x(t) from xp(t) , we need to shift one copy of the original spectrum X(jω) to the
origin, and then filter out all of the other copies of X(jω) in Xp(jω) . One simple way to shift the
spectrum is to multiply xp(t) by cos(tπ/∆) . The following system will recover x(t) from xp(t)
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H1(jω) =

{

∆ |ω| < ωM

0 else

• OWN 7.23(c)

To recover x(t) from y(t) , we need to shift the two parts of X(jω) that are located near π/∆ and
−π/∆ back to the origin, and then filter out the components of the spectrum at higher frequencies.
The following system will recover x(t) from y(t)

H2(jω) =

{

2∆ |ω| < ωM

0 else

• OWN 7.23(d)

Looking at the plot of Xp(jω) in part (a), we see that aliasing is avoided when ωM ≤ π/∆.
Therefore, the maximum value of ∆ which allows x(t) to be recovered is ∆max = π/ωM
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