
EECS 120 Signals & Systems University of California, Berkeley: Fall 2007
Ramchandran October 4, 2007

Homework 6 GSI: Mary Knox

Due: Monday, October 15, 2007, at 5pm

Reading OWN Chapter 7.

Problem 1 (Discrete-time Processing of Continuous-time Signals.)

OWN Problem 7.29

Problem 2 (Discrete-time Processing of Continuous-time Signals.)

OWN Problem 7.43

Note: When finding the unit sample response h[n], please write an expression for it. You do not need to
evaluate the expression.

Problem 3 (Sampling Rates.)

Suppose Jane is running out of space on her hard drive. In order to make sure she has the necessary
memory to save her Matlab files, she is trying to reduce the storage space needed to store all of her audio
files. Since the average human can hear 20 Hz to 20 kHz, she first put all of her music through a low pass
filter with a cutoff frequency of 20 kHz in order to make sure unnecessary data is not stored. Assume
that she can sample ideally and that all of her music contains all frequencies up to 20 kHz

(a) What is the lowest rate Jane could sample at in order to avoid aliasing and perfectly reconstruct
her music for all frequencies that the average human can hear?

(b) After sampling at the rate found in (a) Jane realizes that she still does not have enough space to
store all of her music and Matlab code. Jane has attended many concerts without hearing protection
and cannot hear quite as well as the average human. In fact, her audible range is from 20 Hz to 15
kHz. What is the lowest rate she could sample at in order to avoid aliasing over all frequencies she
can hear?

Problem 4 (Discrete-time Zero-order and First-order Holds.)

OWN 7.50

Problem 5 (Oversampled D/A.)

An oversampled D/A is implemented using a digital interpolator and a zero-order hold, as shown below.

L Gain = L ZOH D/A
Ideal LPFy[n]

Cutoff = π/L

ya(t)

The interpolator inserts L − 1 zeros between each sample of y[n] . The zero-order hold has period
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T = 1/L , i.e., the duration of the ZOH is dependent on the upsampling factor. As usual, the impulse
response of the ZOH is given by

1

p(t)

t
T

The discrete time signal y[n] has DTFT Y (ejΩ) =

{

1 |Ω| < 3π/4
0 3π/4 < |Ω| < π

(a) Plot the magnitude spectrum |Ya(jω)| for three cases: L = 1 , L = 2 , and L = 4 .

Plot each spectrum over the interval −5π/T ≤ ω ≤ 5π/T (remember that T is dependent on L ). You
may either use Matlab or sketch the plots by hand. Be sure to accurately label all important points on
the ω -axis.

(b) Plot the magnitude spectrum |Ya(jω)| when the ZOH is replaced with an ideal D/A converter.

(c) For the four plots in parts (a) and (b), calculate the magnitude of the largest component of Ya(jω)
outside the band |ω| ≤ π/T

Problem 6 (Band-pass Sampling.)

Suppose a continuous-time signal x(t) has the spectrum shown in Figure 1. Such a signal is sometimes
called a band-pass signal. The Nyquist rate (that is, the smallest sampling rate that avoids aliasing) for
this signal is 6π , since the highest occupied frequency is 3π .

The spectral support of a band-pass signal is the amount of spectrum it uses. For the example given in
Figure 1, the spectral support is π .1 Clearly, the number of degrees of freedom of the signal is determined
by the spectral support, rather than by the highest occupied frequency. So, the intuition is that the signal
can be sampled at a rate equal twice its spectral support, which for the example shown in Figure 1 is
2π . This is true, but generally requires non-uniform sampling and involves certain forms of aliasing
(overlapping replica of the original spectum), thus requiring involved reconstruction procedures.

For some lucky instances of band-pass signals, however, one can just go ahead and sample them at a
sampling frequency equal to twice the spectral support. In this homework problem, we examine these
lucky cases.

(a) Show that for the example given in Figure 1, it is true that sampling at ωs = 2π enables perfect
reconstruction. Hint: Draw the spectrum of the sampled signal.
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Figure 1: The spectrum for Problem 6, Part (a).

1Since most interesting signals are real-valued, and hence their spectra conjugate symmetric, the spectral support is

usually given for the positive frequencies only.
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(b) Consider the signal whose spectrum is shown in Figure 2. This is the exact same figure as Figure 1,
except that the two triangles are moved π/4 closer to the origin. What is the Nyquist sampling rate in this
case? The spectral support is unchanged, but show that it is not true that this signal can be uniformly
sampled at ωs = 2π without introducing aliasing. We could sample it at the Nyquist frequency, but
it can be shown that a smaller sampling frequency is already sufficient. What is the smallest sampling
frequency that avoids aliasing? Hint: Draw again the spectrum of the sampled signal.
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Figure 2: The spectrum for Problem 6, Part (b).

(c) Suppose that you are allowed to process the continuous-time band-pass signal (using a suitable
continuous-time system) before sampling it. Show that in this case, it is always possible to sample the
signal at a sampling frequency equal to twice its spectral support.

Remark: Band-pass sampling is quite an interesting tool in digital communications. Suppose that the
incoming continuous-time signal is at 1900MHz (the GSM band in the United States), but its spectral
support is very small (it may be a speech signal with a spectral support of less than 50kHz ). Hence,
instead of demodulating the signal in the continuous time domain, requiring expensive local oscillators,
one can potentially sample it at a very low rate, corresponding to the spectral support (for the speech
example, sampling at 100kHz may be enough, as we have shown in this problem). Clearly, this is a very
attractive system design. The downside is that the implementation of precise sampling devices is known
to be a rather challenging task.

Problem 7 (Aliasing.)

First, note that the signal

x(t) =
W

4π
sinc2

(

Wt

4π

)

=
4π

W

(

sin(W
4

t)

πt

)2

Note: The above definition of sinc(x) is consistent with Matlab’s definition, which is sinc(x) = sin(πx)/(πx) .

has Fourier transform

X(jω) =

{

1 −
∣

∣

2ω
W

∣

∣ if − W
2

< ω < W
2

0 elsewhere

which is bandlimited with one sided bandwidth ωM = W
2

. From the sampling theorem we know that if
the signal is sampled with sampling interval T satisfying 2π

T
> W , then we can reconstruct x(t) perfectly.

For this problem, pick W = 8 . If the sampling interval is T = 0.5 we would have perfect reconstruction,
while with T = 2 we should expect to see aliasing.

Using Matlab:
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On the parts of this problem that involve multiplication by impulses or time/frequency conversions, don’t
worry too much about getting the scale on the y-axis exactly right. The scale of the independent variable
( t or ω ) is very important, however.

(a) Plot x(t) over −10 < t < 10 . Also plot X(jω) .

(b) For T = 0.5 , plot xp(t) , the result of multiplying x(t) by an impulse train of period T. Be sure your
time axis is labeled correctly. Plot its Fourier transform. What is its period?

(c) Low pass filter xp(t) to retain only one period and plot the resulting time-domain waveform. You may
do this filtering in the frequency domain (multiply by a box function) or in the time domain (convolve
with a sinc).

(d) For T = 2 , plot xp(t) , the result of multiplying x(t) by an impulse train of period T. Be sure your
time axis is labeled correctly. Plot its Fourier transform. What is its period?

(e) Low pass filter xp(t) to retain only one period and plot the resulting time-domain waveform. You may
do this filtering in the frequency domain (multiply by a box function) or in the time domain (convolve
with a sinc). Don’t worry about getting the y-axis scaling exactly right.
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