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Homework 6 Solutions

Problem 1 (Discrete-time Processing of Continuous-time Signals.) OWN Problem 7.29

The outputs of each block of the overall system for filtering a continous-time signal using a discrete-time
filter are given and plotted in Figure 1. Following OWN notation, in this problem Ω is used to denote
the frequency variable of the discrete-time signal.

xp(t) = xc(t)p(t)

Xp(jω) =
1

T

∞
∑

k=−∞

Xc(j(ω −
2πk

T
))

x[n] = xc(nT )

X(ejΩ) = Xp(j
Ω

T
) =

1

T

∞
∑

k=−∞

Xc(j(
Ω − 2πk

T
))

y[n] = x[n] ∗ h[n]

Y (ejΩ) = X(ejΩ)H(ejΩ)

yp(t) =
∞
∑

n=−∞

y[n]δ(t − nT )

Yp(jω) =
∞
∑

k=−∞

y[n]e−jωnT

Yp(jω) = Y (ejωT )

yc(t) = yp(t) ∗ h(t)

Yc(jω) = Yp(jω)H(jω)
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Figure 1: Problem 1.
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Problem 2 (Discrete-time Processing of Continuous-time Signals.) OWN Problem 7.43

First let’s determine the frequency response of the LTI system that has input xc(t) and output yc(t) by
converting the following time domain equation to the frequency domain.

d2yc(t)

dt2
+ 4

dyc(t)

dt
+ 3yc(t) = xc(t)

In the frequency domain, this is

(jω)2Yc(jω) + 4(jω)Yc(jω) + 3Yc(jω) = Xc(jω)

Yc(jω)[(jω)2 + 4(jω) + 3] = Xc(jω)

Hc(jω) =
Yc(jω)

Xc(jω)
=

1

(jω + 3)(jω + 1)

Hc(jω) =
0.5

jω + 1
−

0.5

jω + 3

Taking the inverse Fourier transform, we get that

h(t) = (0.5e−t − 0.5e−3t)u(t)

Going through the block diagram shown in Figure P7.43(a) of OWN, we see that:

xp(t) =
∞
∑

n=−∞

x[n]δ(t − nT )

Xp(jω) = X(ejωT )

Xc(jω) =

{

TXp(jω) = TX(ejωT ) |ω| ≤ π
T

0 otherwise

Yc(jω) =

{

Hc(jω)Xc(jω) = Hc(jω)TX(ejωT ) |ω| ≤ π
T

0 otherwise

Yp(jω) =
1

T

∞
∑

k=−∞

Yc(j(ω −
k2π

T
))

One period of Yp(jω) = 1
T Yc(jω) = H(jω)X(ejωT ) for |ω| ≤ π

T .

Therefore, one period of Y (ejΩ) = H(j Ω
T )X(ejΩ) for |Ω| ≤ π .

Thus, the equivalent LTI system H(ejω) = H(j Ω
T ) for |Ω| ≤ π . Note that H(ejω) is Fourier transform

of h[n] which can be obtained by low-pass filtering h(t) (with a filter of height T and cutoff frequency
of π

T ) and sampling the result every T . Therefore,

h[n] =
[

h(t) ∗
sin(πt

T )
πt
T

]

t=nT
=

[T

2

∫

∞

τ=0

(e−τ − e−3τ )
sin(π(t−τ)

T )

π(t − τ)
dτ

]

t=nT

Problem 3 (Sampling Rates.)
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(a) In order to avoid aliasing we should sample at twice the maximum frequency. Thus, we should
sample at 40kHz.

(b) Since we do not care if there is aliasing between 15 - 20 kHz, we should sample at 35 kHz. At this
sampling rate there is no aliasing for frequencies less than 15 kHz.

Problem 4 (Discrete-time Zero-order and First-order Holds.) OWN Problem 7.50

(a)

h0[n] =

{

1 n = 0, 1, ..., N − 1
0 else

n

1

N−11 20

h0[n]

Figure 2: Problem 4 (a)

(b) The condition ωS = 2π
N > 2ωM is equivalent to ωM < π

N . Because

Xp(e
jω) =

1

N

N−1
∑

k=0

X(ej(ω−kωS))

the signals X(ejω) and Xp(e
jω) can be sketched as follows.
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ω

ω

X(ejω)

Xp(e
jω)
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π
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− π
N
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3π
N

Figure 3: Problem 4 (b)

In order to perfectly recover x[n] , we require that
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HL(ejω) = H0(e
jω)H(ejω) =

{

N |ω| < π/N
0 else

The frequency response of the ZOH is given by

H0(e
jω) =

N−1
∑

n=0

e−jωn =
1 − e−jωN

1 − e−jω
= e(−jω(N−1)/2) ·

sin(ωN/2)

sin(ω/2)

Therefore,

H(ejω) =
HL(ejω)

H0(ejω)
=

{

Ne(jω(N−1)/2) · sin(ω/2)
sin(ωN/2) |ω| < π/N

0 else

A plot of |H(ejω)| for N = 2 is given in Figure 4.
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Figure 4: Problem 4 (b)

(c)

h1[n] =

{

1 −
∣

∣

n
N

∣

∣ n = −N, ..., N
0 else

1

n
−2 −1 0 1 2 N−N

h1[n]

Figure 5: Problem 4 (c)

(d) First, we observe that h1[n] = 1
N h0[n] ∗ h0[−n] . Therefore,

H1(e
jω) =

1

N
H0(e

jω)H0(e
−jω) =

1

N

sin2(ωN/2)

sin2(ω/2)
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In order to perfectly recover x[n] , we require HL(ejω) = H1(e
jω)H(ejω) to be the same as in part

(b). Following the same reasoning as in part (b), we see that

H(ejω) =

{

N2 sin2(ω/2)
sin2(ωN/2)

|ω| < π/N

0 else

A plot of |H(ejω)| for N = 2 is given in Figure 6.
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Figure 6: Problem 4 (d)

Problem 5 (Oversampled D/A.)

z[n]w[n]L Gain = L ZOH D/A
Ideal LPFy[n]

Cutoff = π/L

ya(t)

Figure 7: Problem 5. Block diagram of oversampled D/A

(a) We know that that W (ejΩ) = Y (ejLΩ) . Applying a LPF to w[n] gives a signal z[n] with spectrum

Z(ejΩ) =

{

L |Ω| < 3π
4L

0 3π
4L < |Ω| < π

The spectra W (ejΩ) and Z(ejΩ) are plotted in the following figure.

The spectrum of the output of the ZOH is given by Z(ejωT ) multiplied by the frequency response
of p(t)

Ya(jω) = Z(ejωT ) · e−jωT/2 · T · sinc(ωT/2)

= Z(ejω/L) · e−jω/(2L) ·
1

L
· sinc(ω/(2L))

where we are using the definition sinc(x) = sin(x)/x . The magnitude of the output is given by
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Figure 8: Problem 5 (a)

|Ya(jω)| = |Z(ejω/L)| ·
1

L
· |sinc(ω/(2L))|

Plots of |Ya(jω)| in the interval −5πL ≤ ω ≤ 5πL are shown in the following figure.

(b) The ideal D/A converter is a LPF, which removes all of the high frequency images in the spectrum.
Therefore, the magnitude spectrum |Y (jω)| is as shown in Figure 10.

(c) The largest component of |Ya(jω)| outside of |ω| ≤ πL is the left edge of the copy of the spectrum
centered at 2πL . At that point, the magnitude is equal to

sinc

(

2πL − 3π/4

2L

)

= sinc

(

π −
3π

8L

)

For L = 1 , the magnitude of the largest out of band component is 0.4705

For L = 2 , the magnitude of the largest out of band component is 0.2177

For L = 4 , the magnitude of the largest out of band component is 0.1020

Problem 6 (Band-pass Sampling.)

(a) x(t) has a Nyquist rate 6π . Sampling x(t) at frequency ws = 2π produces

Xp(jw) =
∞
∑

k=−∞

X(k(ω − 2πk)).

As we can see from Figure 11, the shifted replicas of X(jω) do not overlap. Since there is no
aliasing, we can perfectly reconstruct x(t) by bandpass filtering the sampled signal with H(jw) .

(b) x(t) has a Nyquist rate 11π
2 . If we sample x(t) at frequency ωs = 2π , the shifted replicas of

X(jω) would overlap and we get aliasing, as seen in Figure 12.

The smallest sampling frequency that avoids aliasing is ωs = 11π
4 . The samped signal xp(t) has

Fourier transform shown in Figure 13.
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Figure 9: Problem 5 (a)
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Figure 10: Problem 5 (b)

Figure 11: Problem 6 (a)

Figure 12: Problem 6 (b)

Figure 13: Problem 6 (b)
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(c) If we pre-process the signal before sampling by making the bandpass signal a lowpass signal, then
we can sample the lowpass singal at the Nyquist rate, which is twice the spectral support of the
bandpass signal. We can then recover the original bandpass signal with reconstruction and post-
processing. See Figure 14.

Pre-processing Post-processing

x(t) x

cos(ω1t)

ω1 − ω2 ω2 − ω1

2
Nyquist
sampling

+
reconstruction

x

cos(ω1t)

−ω2 −ω1
ω1 ω2

2

Figure 14: Problem 6 (c)

Problem 7 (Aliasing.)

(a)

Figure 15: Problem 7 (a)

(b) The period is 2π/T = 4π .

(d) The period is 2π/T = π .
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Figure 16: Problem 7 (b)

(c)

Figure 17: Problem 7 (c)
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Figure 18: Problem 7 (d)

(e)
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Figure 19: Problem 7 (e)
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