Ramchandran

Homework 7 Solutions

(Submit your grades to ee120.gsi@gmail.com)
Problem 1 (Interpolation and Decimation)
OWN Problem 7.19
Label the output of the Zero insertion box $x_{z}[n]$, as shown in Figure 1.

Figure 1: Block Diagram for Problem 1.

Since we are given $x[n]$ we can determine $X\left(e^{j \omega}\right)$.

$$
X\left(e^{j \omega}\right)= \begin{cases}1, & \text { if } 0 \leq|\omega| \leq \omega_{1} \\ 0, & \text { if } \omega_{1}<|\omega| \leq \pi\end{cases}
$$

Since we are inserting 2 zeros between the points in the original sequence $x[n]$,

$$
X_{z}\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x_{z}[n] e^{-j \omega n}=\sum_{n \text { if } n \bmod 3=0} x[n / 3] e^{-j \omega n}=\sum_{k=-\infty}^{\infty} x[k] e^{-j \omega 3 k}=X\left(e^{j 3 \omega}\right)
$$

Let's examine decimation in the frequency domain:

$$
\begin{gathered}
Y\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} y[n] e^{-j \omega n}=\sum_{n=-\infty}^{\infty} w[5 n] e^{-j \omega n}=\sum_{k \text { if } k \bmod 5=0} w[k] e^{-j \omega k / 5} \\
=\sum_{k=-\infty}^{\infty} w[k]\left(\frac{1+e^{j 2 \pi k / 5}+e^{j 4 \pi k / 5}+e^{j 6 \pi k / 5}+e^{j 8 \pi k / 5}}{5}\right) e^{-j \omega k / 5} \\
=\frac{1}{5}\left(W\left(e^{j \omega / 5}\right)+W\left(e^{j(\omega-2 \pi) / 5}\right)+W\left(e^{j(\omega-4 \pi) / 5}\right)+W\left(e^{j(\omega-6 \pi) / 5}\right)+W\left(e^{j(\omega-8 \pi) / 5}\right)\right)
\end{gathered}
$$

In other words, $Y\left(e^{j \omega}\right)$ is an expanded or stretched out version of $W\left(e^{j \omega}\right)$.

Figure 2: Problem 1 (a).

Figure 3: Problem 1 (a).

Figure 4: Problem 1 (a).

- 7.19 (a)

When $\omega_{1} \leq \frac{3 \pi}{5}, H\left(e^{j \omega}\right)$ merely eliminates the copies created by the zero insertion. From the plot shown in Figure 4, we see that $y[n]=\frac{\sin \left(5 \omega_{1} n / 3\right)}{5 \pi n}$.

- 7.19 (b)

Figure 5: Problem 1 (b).

Figure 6: Problem 1 (b).

Figure 7: Problem 1 (b).

When $\omega_{1}>\frac{3 \pi}{5}, H\left(e^{j \omega}\right)$ not only eliminates the copies created by the zero insertion but also cuts off part of the central copy of the spectrum (limiting it to be bandlimited with maximum frequency $\pi / 5)$. Then, when the signal is decimated, $Y\left(e^{j \omega}\right)=\frac{1}{5}$ for all values of ω. Thus, $y[n]=\frac{1}{5} \delta[n]$.

Problem 2 (Upsampling.)

OWN Problem 7.49

- 7.49 (a)

Let $x_{d_{1}}[n]$ and $x_{d_{2}}[n]$ be two inputs to system A , with corresponding outputs $x_{p_{1}}[n]$ and $x_{p_{2}}[n]$. Now, consider an input of the form $x_{d_{3}}[n]=\alpha_{1} x_{d_{1}}[n]+\alpha_{2} x_{d_{2}}[n]$. With this input, the output of the system will be

$$
x_{p_{3}}[n]=\left\{\begin{array}{cc}
\alpha_{1} x_{d_{1}}[n / N]+\alpha_{2} x_{d_{2}}[n / N] & n=0, \pm N, \pm 2 N, \ldots \\
0 & \text { else }
\end{array}\right.
$$

Thus, $x_{p_{3}}[n]=\alpha_{1} x_{p_{1}}[n]+\alpha_{2} x_{p_{2}}[n]$. This means that the system is linear.

- 7.49 (b)

The system is not time invariant. For example, an input $x_{d}[n]=\delta[n]$ gives an output $x_{p}[n]=$ $\delta[n]$, while the shifted input $x_{d}[n-1]=\delta[n-1]$ gives an output $\delta[n-N] \neq x_{p}[n-1]$.

- 7.49 (c)

$$
\begin{aligned}
X_{p}\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x_{p}[n] e^{j \omega n} \\
& =\sum_{k=-\infty}^{\infty} x_{p}[k N] e^{j \omega k N} \\
& =\sum_{k=-\infty}^{\infty} x_{d}[k] e^{j \omega k N} \\
& =X_{d}\left(e^{j \omega N}\right)
\end{aligned}
$$

A plot of $X_{p}\left(e^{j \omega}\right)$ is shown in Figure 8.

- 7.49 (d)

A plot of $X\left(e^{j \omega}\right)$ is shown in Figure 8.

Figure 8: Problem 2 (c) and (d)

Problem 3 (Downsampling.)
OWN Problem 7.35

- 7.35 (a)

The sequences $x_{p}[n]$ and $x_{d}[n]$ are sketched in Figure 9.

- 7.35 (b)

Discrete-time impulse-train sampling of $x[n]$ generates the signal $x_{p}[n]$.

Figure 9: Problem 3 (a)

$$
\begin{aligned}
x_{p}[n] & = \begin{cases}x[n], & n=0, \pm 2, \pm 4, \ldots \\
0, & n= \pm 1, \pm 3, \ldots\end{cases} \\
& =\sum_{k=-\infty}^{\infty} x[2 k] \delta[n-2 k] \\
& =x[n] \cdot p[n] \\
P\left(e^{j \omega}\right) & =\pi \sum_{k=-\infty}^{\infty} \delta(\omega-\pi k) \\
X_{p}\left(e^{j \omega}\right) & =\frac{1}{2 \pi} \int_{2 \pi} P\left(e^{j \theta}\right) X\left(e^{j(\omega-\theta)}\right) d \theta \\
& =\frac{1}{2} \sum_{k=0}^{1} X\left(e^{j(\omega-\pi k)}\right)
\end{aligned}
$$

Decimation of $x[n]$ generates the signal $x_{d}[n]$.

$$
\begin{aligned}
x_{d}[n] & =x[2 n]=x_{p}[2 n] \\
X_{d}\left(e^{j \omega}\right) & =X_{p}\left(e^{j \frac{\omega}{2}}\right)
\end{aligned}
$$

$X_{p}\left(e^{j \omega}\right)$ and $X_{d}\left(e^{j \omega}\right)$ are sketched in Figure 10.

Figure 10: Problem 3 (b)

Problem 4 (AM Communication Systems.)
OWN Problem 8.21

- 8.21(a)

We have $y(t)=x(t) \cos \left(\omega_{c} t+\theta_{c}\right)$. Therefore,

$$
\begin{aligned}
w(t) & =y(t) \cos \left(\omega_{c} t+\theta_{c}\right) \\
& =x(t) \cos ^{2}\left(\omega_{c} t+\theta_{c}\right) \\
& =x(t)\left[\frac{1+\cos \left[2\left(\omega_{c} t+\theta_{c}\right)\right]}{2}\right] \\
& =\frac{1}{2} x(t)+\frac{1}{2} x(t) \cos \left(2 \omega_{c} t+2 \theta_{c}\right)
\end{aligned}
$$

- 8.21(b)

The Fourier Transforms $X(j \omega)$ and $Y(j \omega)$ of $x(t)$ and $y(t)$ are sketched in Figure 11. From the sketch of $Y(j \omega)$, it is clear that in order to avoid aliasing, we require that $\omega_{c}>\omega_{M}$
We also sketch $W(j \omega)$ and the LPF in the same figure. In order to have the output proportional to $x(t)$, the cutoff frequency $\omega_{c o}$ must satisfy the inequalities

$$
\omega_{M} \leq \omega_{c o} \leq 2 \omega_{c}-\omega_{M}
$$

If these two conditions are satisfied, the value of θ_{c} does not matter.

8.21 (b)

Figure 11: Problem 4 (b)

Problem 5 (AM Communication Systems.)
OWN Problem 8.22
The spectrum $Y(j \omega)$ is sketched in Figure 12.
8.22

Figure 12: Problem 5

