EECS 120 Signals & Systems Ramchandran

Homework 7 Solutions

(Submit your grades to ee120.gsi@gmail.com) **Problem 1** (Interpolation and Decimation) OWN Problem 7.19

Label the output of the Zero insertion box $x_{z}[n]$, as shown in Figure 1.

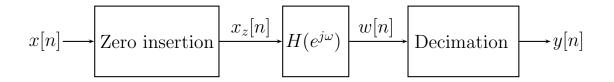


Figure 1: Block Diagram for Problem 1.

Since we are given x[n] we can determine $X(e^{j\omega})$.

$$X(e^{j\omega}) = \begin{cases} 1, & \text{if } 0 \le |\omega| \le \omega_1 \\ 0, & \text{if } \omega_1 < |\omega| \le \pi \end{cases}$$

Since we are inserting 2 zeros between the points in the original sequence x[n],

$$X_{z}(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x_{z}[n]e^{-j\omega n} = \sum_{n \text{ if } n \text{ mod } 3=0} x[n/3]e^{-j\omega n} = \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega 3k} = X(e^{j3\omega})$$

Let's examine decimation in the frequency domain:

=

$$\begin{split} Y(e^{j\omega}) &= \sum_{n=-\infty}^{\infty} y[n] e^{-j\omega n} = \sum_{n=-\infty}^{\infty} w[5n] e^{-j\omega n} = \sum_{k \text{ if } k \text{ mod } 5=0}^{\infty} w[k] e^{-j\omega k/5} \\ &= \sum_{k=-\infty}^{\infty} w[k] \Big(\frac{1+e^{j2\pi k/5} + e^{j4\pi k/5} + e^{j6\pi k/5} + e^{j8\pi k/5}}{5} \Big) e^{-j\omega k/5} \\ \frac{1}{5} \Big(W(e^{j\omega/5}) + W(e^{j(\omega-2\pi)/5}) + W(e^{j(\omega-4\pi)/5}) + W(e^{j(\omega-6\pi)/5}) + W(e^{j(\omega-8\pi)/5}) \Big) \Big) \end{split}$$

In other words, $Y(e^{j\omega})$ is an expanded or stretched out version of $W(e^{j\omega})$.

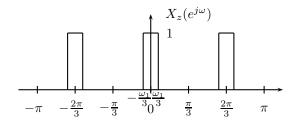


Figure 2: Problem 1 (a).

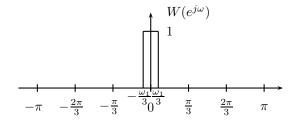


Figure 3: Problem 1 (a).

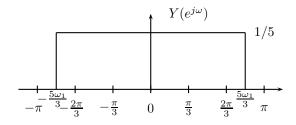


Figure 4: Problem 1 (a).

• 7.19 (a)

When $\omega_1 \leq \frac{3\pi}{5}$, $H(e^{j\omega})$ merely eliminates the copies created by the zero insertion. From the plot shown in Figure 4, we see that $y[n] = \frac{\sin(5\omega_1 n/3)}{5\pi n}$.

• 7.19 (b)

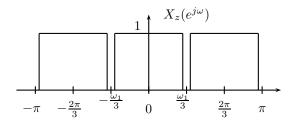


Figure 5: Problem 1 (b).

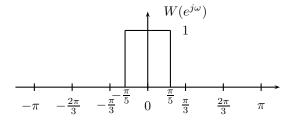


Figure 6: Problem 1 (b).

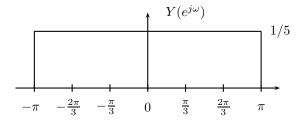


Figure 7: Problem 1 (b).

When $\omega_1 > \frac{3\pi}{5}$, $H(e^{j\omega})$ not only eliminates the copies created by the zero insertion but also cuts off part of the central copy of the spectrum (limiting it to be bandlimited with maximum frequency $\pi/5$). Then, when the signal is decimated, $Y(e^{j\omega}) = \frac{1}{5}$ for all values of ω . Thus, $y[n] = \frac{1}{5}\delta[n]$.

Problem 2 (Upsampling.)

OWN Problem 7.49

• 7.49 (a)

Let $x_{d_1}[n]$ and $x_{d_2}[n]$ be two inputs to system A, with corresponding outputs $x_{p_1}[n]$ and $x_{p_2}[n]$. Now, consider an input of the form $x_{d_3}[n] = \alpha_1 x_{d_1}[n] + \alpha_2 x_{d_2}[n]$. With this input, the output of the system will be

$$x_{p_3}[n] = \begin{cases} \alpha_1 x_{d_1}[n/N] + \alpha_2 x_{d_2}[n/N] & n = 0, \pm N, \pm 2N, \dots \\ 0 & else \end{cases}$$

Thus, $x_{p_3}[n] = \alpha_1 x_{p_1}[n] + \alpha_2 x_{p_2}[n]$. This means that the system is **linear**.

• 7.49 (b)

The system is **not time invariant**. For example, an input $x_d[n] = \delta[n]$ gives an output $x_p[n] = \delta[n]$, while the shifted input $x_d[n-1] = \delta[n-1]$ gives an output $\delta[n-N] \neq x_p[n-1]$.

• 7.49 (c)

$$\begin{aligned} X_p(e^{j\omega}) &= \sum_{n=-\infty}^{\infty} x_p[n] e^{j\omega n} \\ &= \sum_{k=-\infty}^{\infty} x_p[kN] e^{j\omega kN} \\ &= \sum_{k=-\infty}^{\infty} x_d[k] e^{j\omega kN} \\ &= X_d(e^{j\omega N}) \end{aligned}$$

A plot of $X_p(e^{j\omega})$ is shown in Figure 8.

7.49 (d)
A plot of X(e^{jω}) is shown in Figure 8.

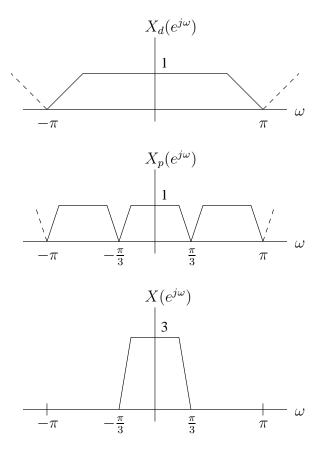


Figure 8: Problem 2 (c) and (d)

Problem 3 (Downsampling.) OWN Problem 7.35

• 7.35 (a)

The sequences $x_p[n]$ and $x_d[n]$ are sketched in Figure 9.

• 7.35 (b)

Discrete-time impulse-train sampling of x[n] generates the signal $x_p[n]$.

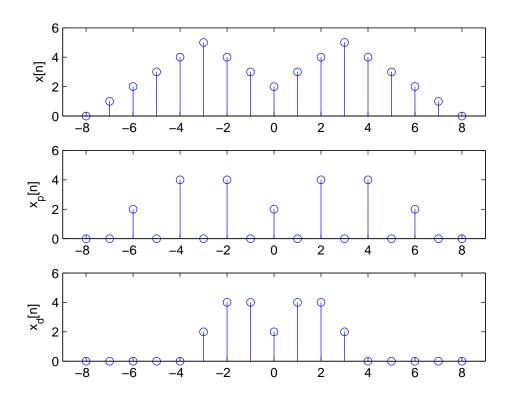


Figure 9: Problem 3 (a)

$$\begin{aligned} x_p[n] &= \begin{cases} x[n], & n = 0, \pm 2, \pm 4, \dots \\ 0, & n = \pm 1, \pm 3, \dots \end{cases} \\ &= \sum_{k=-\infty}^{\infty} x[2k]\delta[n-2k] \\ &= x[n] \cdot p[n] \\ P(e^{j\omega}) &= \pi \sum_{k=-\infty}^{\infty} \delta(\omega - \pi k) \\ X_p(e^{j\omega}) &= \frac{1}{2\pi} \int_{2\pi} P(e^{j\theta}) X(e^{j(\omega - \theta)}) d\theta \\ &= \frac{1}{2} \sum_{k=0}^{1} X(e^{j(\omega - \pi k)}) \end{aligned}$$

Decimation of x[n] generates the signal $x_d[n]$.

$$\begin{aligned} x_d[n] &= x[2n] = x_p[2n] \\ X_d(e^{j\omega}) &= X_p(e^{j\frac{\omega}{2}}) \end{aligned}$$

 $X_p(e^{j\omega})\,$ and $\,X_d(e^{j\omega})\,$ are sketched in Figure 10.

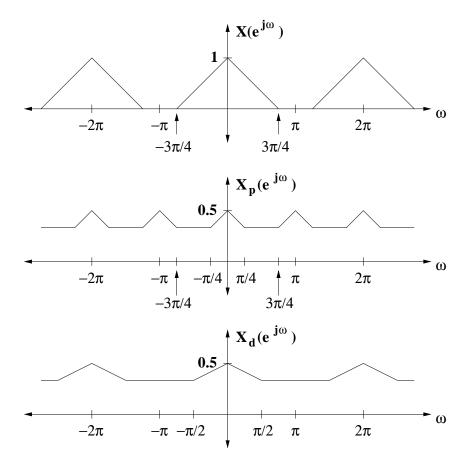


Figure 10: Problem 3 (b)

Problem 4 (AM Communication Systems.) OWN Problem 8.21

• 8.21(a)

We have $y(t) = x(t)\cos(\omega_c t + \theta_c)$. Therefore,

$$w(t) = y(t)\cos(\omega_c t + \theta_c)$$

= $x(t)\cos^2(\omega_c t + \theta_c)$
= $x(t)\left[\frac{1 + \cos[2(\omega_c t + \theta_c)]}{2}\right]$
= $\frac{1}{2}x(t) + \frac{1}{2}x(t)\cos(2\omega_c t + 2\theta_c)$

• 8.21(b)

The Fourier Transforms $X(j\omega)$ and $Y(j\omega)$ of x(t) and y(t) are sketched in Figure 11. From the sketch of $Y(j\omega)$, it is clear that in order to avoid aliasing, we require that $\omega_c > \omega_M$. We also sketch $W(j\omega)$ and the LPF in the same figure. In order to have the output proportional to x(t), the cutoff frequency ω_{co} must satisfy the inequalities $\omega_M \le \omega_{co} \le 2\omega_c - \omega_M$

If these two conditions are satisfied, the value of θ_c does not matter.

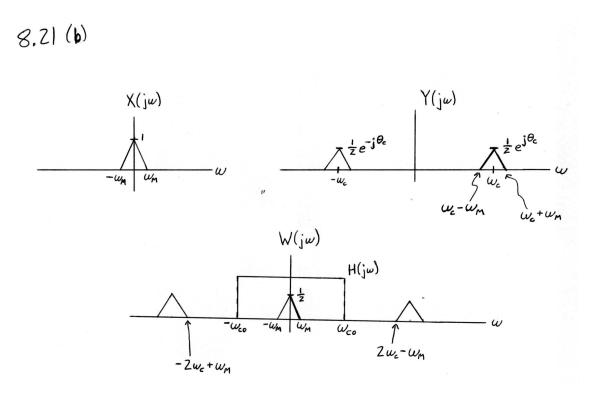


Figure 11: Problem 4 (b)

Problem 5 (AM Communication Systems.) OWN Problem 8.22 The spectrum $Y(j\omega)$ is sketched in Figure 12.

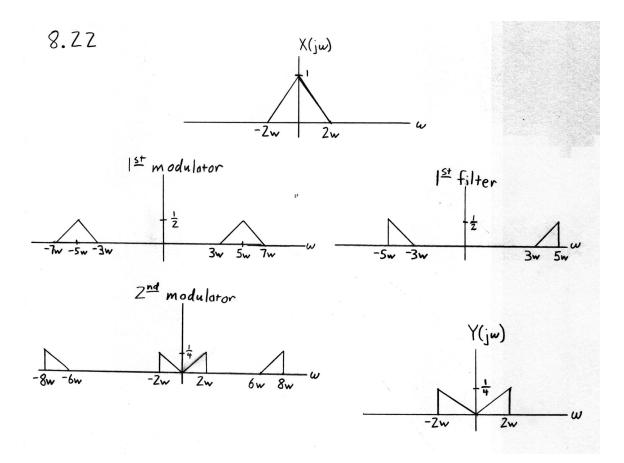


Figure 12: Problem 5