Homework 8 Due: Thursday, November 1, 2007, at 5pm Homework GSI: Mary Knox

Reading OWN Chapter 8.

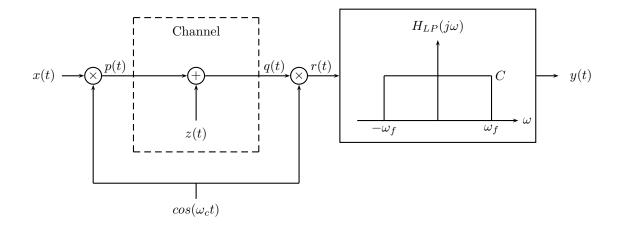
Practice Problems (Suggestions.) OWN 8.8, 8.20, 8.44.

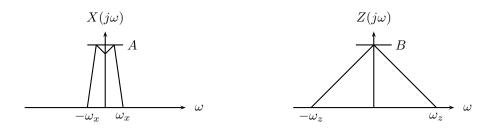
Problem 1 (Effects from loss of synchronization.) OWN Problem 8.47

Problem 2 (Asynchronous demodulation.) OWN Problem 8.26.

Problem 3 (Single-sideband amplitude modulation.) OWN Problem 8.29.

Problem 4 (Quadrature multiplexing.) OWN Problem 8.40


Problem 5 (Intersymbol spacing.) OWN Problem 8.13


Problem 6 (Signal transmission system.)

The transmission system depicted below is intended to allow a signal x(t) to be transmitted through a communication channel that also carries other signals represented by z(t).

Both x(t) and z(t) are bandlimited, and their Fourier transforms $X(j\omega)$ and $Z(j\omega)$ are real, as sketched below. Notice that the bandwidth ω_z of $Z(j\omega)$ is much greater than the bandwidth ω_x of $X(j\omega)$.

- (a) We wish to determine parameters for the transmission system so that the output y(t) is equal to the input x(t). Determine the range of ω_c for which y(t) can be made equal to x(t). Explain.
- (b) Given a value of ω_c in the range specified in part (a), determine the range of values of ω_f and the value of C for which y(t) = x(t). Your expression may contain ω_c and/or parameters of the Fourier transforms $X(j\omega)$ and $Z(j\omega)$. Briefly explain your reasoning.

Problem 7 (FSK.) OWN 8.39