Homework 8 Solutions

Problem 1 OWN 8.47 (Effects from loss of synchronization.)

In this problem we assume that $\omega_c > \omega_M$ and $\pi > \omega_c + \omega_M$. Let $G_c(e^{j\omega})$ represent the Fourier transform of $\cos(\omega_c n + \theta_c)$ and $G_d(e^{j\omega})$ represent the Fourier transform of $\cos(\omega_c n + \theta_d)$, which are shown below.

$$W(e^{j\omega}) = \frac{1}{2\pi} \int_{2\pi} Y(e^{j(\omega-\theta)}) G_d(e^{j\theta}) d\theta$$

(a) If $\Delta \omega = 0$, then $\omega_d = \omega_c$. Therefore, $W(e^{j\omega})$ is as shown below.

$$W(e^{j\omega})$$

$$\cdots \xrightarrow{\frac{1}{4}e^{-j(\theta_c+\theta_d)}} \bigwedge \xrightarrow{\frac{1}{2}\cos(\theta_d-\theta_c)} \cdots \xrightarrow{\frac{1}{4}e^{j(\theta_c+\theta_d)}} \cdots \xrightarrow{\frac{1}{4}e^{j(\theta_c+\theta_d)}} \cdots \xrightarrow{\frac{1}{4}e^{-j(\theta_c+\theta_d)}} \cdots$$

- (b) If we pass $W(e^{j\omega})$ from Figure through the LPF $R(e^{j\omega}) = \cos(\theta_d \theta_c)X(e^{j\omega}) = \cos(\Delta\theta)X(e^{j\omega})$ and $r[n] = \cos(\Delta\theta)x[n]$. If $\Delta\theta = \pi/2$, then r[n] = 0.
- (c) In this case, $W(e^{j\omega})$ is as shown below. If $w > \omega_M + \Delta \omega$, then $R(e^{j\omega}) = \frac{1}{2}X(e^{j(\omega \Delta \omega)}) + \frac{1}{2}X(e^{j(\omega + \Delta \omega)})$ for $-\pi \le \omega < \pi$. Therefore, $r[n] = x[n] \cos(\Delta \omega n)$.

Problem 2 OWN Problem 8.26. (Asynchronous demodulation.)

First let's solve for the Fourier transform of y(t).

$$Y(j\omega) = \frac{1}{2}e^{j\theta_c}X(j(\omega-\omega_c)) + \frac{1}{2}e^{-j\theta_c}X(j(\omega+\omega_c)) + A\pi\left(e^{j\theta_c}\delta(\omega-\omega_c) + e^{-j\theta_c}\delta(\omega+\omega_c)\right)$$

Let's define $w_1(t)$ to be the output after y(t) is multiplied by $\cos(\omega_c t)$ and $w_2(t)$ to be the output after y(t) is multiplied by $\sin(\omega_c t)$. Also, let $z_1(t)$ be the output after $w_1(t)$ is passed through the low-pass filter (LPF) and $z_2(t)$ be the output after $w_2(t)$ is passed through the LPF.

$$W_{1}(j\omega) = \frac{1}{2}Y(j(\omega-\omega_{c})) + \frac{1}{2}Y(j(\omega+\omega_{c}))$$

$$= \frac{1}{4}e^{j\theta_{c}}\left(X(j(\omega-2\omega_{c})) + 2A\pi\delta(\omega-2\omega_{c})\right) + \frac{1}{4}(e^{-j\theta_{c}} + e^{j\theta_{c}})\left(X(j\omega) + 2A\pi\delta(\omega)\right)$$

$$+ \frac{1}{4}e^{-j\theta_{c}}\left(X(j(\omega+2\omega_{c})) + 2A\pi\delta(\omega+2\omega_{c})\right)$$

$$W_{2}(j\omega) = \frac{1}{2j}Y(j(\omega - \omega_{c})) - \frac{1}{2j}Y(j(\omega + \omega_{c}))$$

$$= \frac{1}{4j}e^{j\theta_{c}}\left(X(j(\omega - 2\omega_{c})) + 2A\pi\delta(\omega - 2\omega_{c})\right) + \frac{1}{4j}(e^{-j\theta_{c}} - e^{j\theta_{c}})\left(X(j\omega) + 2A\pi\delta(\omega)\right)$$

$$- \frac{1}{4j}e^{-j\theta_{c}}\left(X(j(\omega + 2\omega_{c})) + 2A\pi\delta(\omega + 2\omega_{c})\right)$$

Assuming the LPF has a gain of 2,

$$Z_1(j\omega) = \frac{1}{2} (e^{-j\theta_c} + e^{j\theta_c}) (X(j\omega) + 2A\pi\delta(\omega))$$

= $\cos(\theta_c) (X(j\omega) + 2A\pi\delta(\omega))$

$$Z_2(j\omega) = \frac{1}{2j} (e^{-j\theta_c} - e^{j\theta_c}) (X(j\omega) + 2A\pi\delta(\omega))$$

= $-\sin(\theta_c) (X(j\omega) + 2A\pi\delta(\omega))$

Thus,

$$z_1(t) = \cos(\theta_c) (x(t) + A)$$
$$z_2(t) = -\sin(\theta_c) (x(t) + A)$$

Figure 1: OWN Problem 8.29

$$\begin{aligned} r(t) &= \sqrt{z_1^2(t) + z_2^2(t)} \\ &= \sqrt{(x(t) + A)^2 \cos^2 \theta_c} + (x(t) + A)^2 \sin^2 \theta_c} \\ &= x(t) + A \end{aligned}$$

Problem 3 OWN Problem 8.29. (Single-sideband amplitude modulation.)

(a) The sketches in the Figure 1 show $S(j\omega)$ and $R(j\omega)$.

(b) In Figure 1 we show how $P(j\omega)$ may be obtained by considering the outputs of the various stages of Figure P8.28(c). From the sketch for $P(j\omega)$, it is clear that $P(j\omega) = 2S(j\omega)$.

(c) In Figure 1 we show the results of demodulation on both s(t) and r(t). It is clear that x(t) is recovered in both cases.

Problem 4 OWN Problem 8.40 (Quadrature multiplexing.)

If we approach this problem analytically in the time domain, we see that:

$$r(t) = x_1(t)\cos(\omega_c t) + x_2(t)\sin(\omega_c t)$$
$$R(j\omega) = \frac{1}{2}X_1(j(\omega - \omega_c)) + \frac{1}{2}X_1(j(\omega + \omega_c)) + \frac{1}{2j}X_2(j(\omega - \omega_c)) - \frac{1}{2j}X_2(j(\omega + \omega_c))$$

Let $z_1(t) = r(t)\cos(\omega_c t)$ and $z_2(t) = r(t)\sin(\omega_c t)$.

$$z_1(t) = r(t)\cos(\omega_c t)$$

$$= x_1(t)\cos^2(\omega_c t) + x_2(t)\sin(\omega_c t)\cos(\omega_c t)$$

$$= x_1(t)\left(\frac{1+\cos(2\omega_c t)}{2}\right) + x_2(t)\left(\frac{\sin(2\omega_c t) + \sin(0)}{2}\right)$$

$$= x_1(t)\left(\frac{1+\cos(2\omega_c t)}{2}\right) + x_2(t)\left(\frac{\sin(2\omega_c t)}{2}\right)$$

$$z_{2}(t) = r(t)\sin(\omega_{c}t)$$

$$= x_{1}(t)\cos(\omega_{c}t)\sin(\omega_{c}t) + x_{2}(t)\sin^{2}(\omega_{c}t)$$

$$= x_{1}(t)\left(\frac{\sin(2\omega_{c}t) + \sin(0)}{2}\right) + x_{2}(t)\left(\frac{1 - \cos(2\omega_{c}t)}{2}\right)$$

$$= x_{1}(t)\left(\frac{\sin(2\omega_{c}t)}{2}\right) + x_{2}(t)\left(\frac{1 - \cos(2\omega_{c}t)}{2}\right)$$

Thus, after the LPF with gain 2.

$$y_1(t) = x_1(t)$$
$$y_2(t) = x_2(t)$$

Let's approach this problem graphically now and in the frequency domain. Let $X_1(j\omega)$ and $X_2(j\omega)$ be as shown in Figure 2. Then $R(j\omega)$ is as shown in Figure 2. The overlapping regions in the figure need to be summed.

When r(t) is multiplied by $\cos \omega_c t$, in the vicinity of $\omega = 0$ we get

$$\frac{1}{2}\left(\frac{1}{2}X_1(j\omega) + \frac{j}{2}X_2(j\omega) + \frac{1}{2}X_1(j\omega) - \frac{j}{2}X_2(j\omega)\right) = \frac{1}{2}X_1(j\omega).$$

Therefore the first lowpass filter output is equal to $x_1(t)$.

When r(t) is multiplied by $\sin \omega_c t$, in the vicinity of $\omega = 0$ we get

$$\frac{1}{2j}\left(\frac{1}{2}X_1(j\omega) + \frac{j}{2}X_2(j\omega) - \left(\frac{1}{2}X_1(j\omega) - \frac{j}{2}X_2(j\omega)\right)\right) = \frac{1}{2}X_2(j\omega).$$

Therefore the second lowpass filter output is equal to $x_2(t)$.

Problem 5 OWN Problem 8.13 (Intersymbol spacing.)

(a)

$$p(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} P(j\omega) d\omega$$
$$= \frac{1}{2\pi} \int_{-\frac{2\pi}{T_1}}^{\frac{2\pi}{T_1}} \frac{1}{2} \left(1 + \cos(\frac{\omega T_1}{2}) \right) d\omega$$
$$= \frac{1}{2\pi} \left[\frac{\omega}{2} + \frac{\sin\left(\frac{\omega T_1}{2}\right)}{T_1} \right] \Big|_{-\frac{2\pi}{T_1}}^{\frac{2\pi}{T_1}}$$
$$= \frac{1}{T_1}$$

Figure 2: OWN Problem 8.40

(b) Since $P(j\omega)$ satisfies eq/ (8.28), we know that it must have zero-crossings every T_1 . Therefore, $p(kT_1) = 0$, for $k = \pm 1, \pm 2, \cdots$

Problem 6 (Signal transmission system.)

(a) $\omega_c > \omega_z + \omega_x$. This is because we need to avoid aliasing.

(b)
$$C = 2$$
 and $\omega_c - \omega_z > \omega_f > \omega_x$.

$$R(j\omega)$$

$$A = \frac{A}{\frac{B}{2}}$$

$$A = \frac{A}{\frac{A}{4}}$$

$$C = 2 \omega_c \qquad \omega_c \qquad \omega_c$$

Problem 7 OWN Problem 8.39 (FSK.)

(a) There are two possible cases. Case 0: $b(t) = m_0(t)$.

$$D_0 = \int_0^T \cos^2(\omega_0 t) dt - \left| \int_0^T \cos(\omega_0 t) \cos(\omega_1 t) dt \right|$$

Case 1: $b(t) = m_1(t)$.

$$D_1 = \int_0^T \cos^2(\omega_1 t) dt - \left| \int_0^T \cos(\omega_0 t) \cos(\omega_1 t) dt \right|$$

Both D_0 and D_1 are maximum when $\left|\int_0^T \cos(\omega_0 t) \cos(\omega_1 t) dt\right| = 0$.

(b)

$$\int_{0}^{T} \cos(\omega_{0}t) \cos(\omega_{1}t) dt = \int_{0}^{T} \frac{1}{2} \left(\cos((\omega_{0} + \omega_{1})t) + \cos((\omega_{0} - \omega_{1})t) \right) dt$$
$$= \left[\frac{\sin((\omega_{0} + \omega_{1})t)}{2(\omega_{0} + \omega_{1})} + \frac{\sin((\omega_{0} - \omega_{1})t)}{2(\omega_{0} - \omega_{1})} \right]_{0}^{T}$$
$$= \frac{\sin((\omega_{0} + \omega_{1})T)}{2(\omega_{0} + \omega_{1})} + \frac{\sin((\omega_{0} - \omega_{1})T)}{2(\omega_{0} - \omega_{1})}$$

Thus for any choice of ω_0 and ω_1 , $\omega_0 \neq \omega_1$, we can always find T so that $\int_0^T \cos(\omega_0 t) \cos(\omega_1 t) dt = 0$.