Homework 9

Due: Thursday, November 8, 2007, at 5pm
 GSI: Pulkit Grover

Reading OWN Sections 8.7, 9.1, 9.2, 9.3.
Practice Problems (Suggestions.) OWN 9.1, 9.2, 9.3, 9.4, 9.5.

Problem 1 (Angle Modulations.)
An angle-modulated signal has the form

$$
u(t)=100 \cos \left(2 \pi f_{c} t+4 \sin 2 \pi f_{m} t\right)
$$

where $f_{c}=10 \mathrm{MHz}$ and $f_{m}=1 \mathrm{KHz}$.
(a) Assuming that this is an FM signal, determine the modulation index and the bandwidth (in Hz) of the transmitted signal.
(b) Repeat part (a) assuming a PM signal.
(c) Compare the signal bandwidths in parts (a) and (b) with SSB AM.
(d) Repeat parts (a) and (b) if f_{m} is doubled.

Problem 2 (Nyquist Pulses.)
One of the design parameters in a pulse amplitude modulation (PAM) system is the choice of pulse shape. As we have seen in class, a PAM signal has the form

$$
\begin{equation*}
s(t)=\sum_{k=-\infty}^{\infty} x[k] p\left(t-k T_{s}\right) \tag{1}
\end{equation*}
$$

where $x[k]$ is the data sequence, $p(t)$ is the pulse, and T_{s} is the pulse period.
We use the following system architecture at the receiver: ${ }^{1}$ The received signal, which in the absence of noise and other adverse effects is merely $s(t)$, is sampled with period T_{s}. Hence, the receiver obtains the following discrete-time signal:

$$
\begin{align*}
r[n] & \stackrel{\text { def }}{=} s\left(n T_{s}\right)=\sum_{k=-\infty}^{\infty} x[k] p\left((n-k) T_{s}\right) \tag{2}\\
& =x[n] p(0)+x[n-1] p(1)+x[n-2] p(2)+\ldots+x[n+1] p(-1)+x[n+2] p(-2)+\ldots \tag{3}
\end{align*}
$$

Further processing at the receiver is greatly simplified if for each time instant $n, r[n]$ depends only on $x[n]$, but not on the other data samples $\{x[k]\}_{k \neq n}$. Which pulses $p(t)$ satisfy this condition?
This is immediately obvious from the above equation: $p(t)$ must be such that

$$
p\left(n T_{s}\right)= \begin{cases}1, & \text { if } n=0 \tag{4}\\ 0, & \text { if } n \neq 0\end{cases}
$$

[^0]It is important to note that for all other t, the pulse shape $p(t)$ can be whatever you'd like it to be! This freedom can be exploited in various ways, but most importantly to obtain a pulse with small spectral support. (Notice that $p(0)$ is selected to be 1 merely for normalization purposes; it could be any non-zero constant.)
(a) Show that if $p\left(n T_{s}\right)=\delta[n]$, then

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} P\left(j\left(\omega-k \frac{2 \pi}{T_{s}}\right)\right)=T_{s} \tag{5}
\end{equation*}
$$

If a signal satisfies Equation (5), it is referred to as a Nyquist pulse (with pulse period T_{s}).
(b) A pulse that satisfies Equation (5) is the sinc function:

$$
\begin{aligned}
p(t) & =\frac{T_{s} \sin \left(\frac{\pi}{T_{s}} t\right)}{\pi t} \\
& =\operatorname{sinc}\left(\frac{t}{T_{s}}\right) \\
P(j \omega) & = \begin{cases}T_{s}, & |\omega|<\frac{\pi}{T_{s}} \\
0, & |\omega|>\frac{\pi}{T_{s}}\end{cases}
\end{aligned}
$$

Convince yourself that the sinc is the time signal of lowest bandwidth that satisfies Equation (5).

Problem 3 (Narrowband FM.)
OWN Problem 8.45.

Problem 4 (Laplace Transforms.)
(a) OWN Problem 9.21 (c).
(b) OWN Problem 9.21 (e).

Problem 5 (Laplace Transforms: ROC.)
OWN Problem 9.23 (all parts).

Problem 6 (Inverting Laplace Transforms.)
(a) OWN Problem 9.22 (a).
(b) OWN Problem 9.22 (b).

[^0]: ${ }^{1}$ In EE121, you will learn that under some assumptions, this is actually the optimum receiver architecture.

