Homework 9 Solutions
 GSI: Pulkit Grover

Problem 1 (Angle Modulations.)

The general form of an angle modulated signal:

$$
\begin{gathered}
A \cos \left(2 \pi f_{c} t+k_{p} a m(t)\right) \\
A \cos \left(2 \pi f_{c} t+k_{f} a \int m(t)\right)
\end{gathered}
$$

The modulation index is defined as:

$$
\begin{align*}
& \beta_{p}=k_{p} a \max [|m(t)|]=\Delta \phi_{\max } \tag{PM}\\
& \beta_{f}=\frac{k_{f} a \max [|m(t)|]}{W}=\frac{\Delta f_{\max }}{W} \tag{FM}
\end{align*}
$$

Where $\Delta \phi_{\max }$ and $\Delta f_{\max }$ are the maximum phase and frequency deviations respectively. W is the bandwidth of the modulating signal in Hz (i.e. $m(t)$ is bandlimited to W). In this problem, the modulated signal:

$$
u(t)=100 \cos \left(2 \pi f_{c} t+4 \sin 2 \pi f_{m} t\right)
$$

The instantaneous phase $\phi(t)=2 \pi f_{c} t+4 \sin \left(2 \pi f_{m} t\right)$, the instantaneous frequency $f(t)=\frac{1}{2 \pi} \frac{d \phi(t)}{d t}=$ $f_{c}+4 f_{m} \cos \left(2 \pi f_{m} t\right)$, and $W=f_{m}$.

$$
\begin{gathered}
\Rightarrow \Delta \phi_{\max }=4, \Delta f_{\max }=4 f_{m} \\
\Rightarrow \beta_{p}=\Delta \phi_{\max }=4, \beta_{f}=\frac{\Delta f_{\max }}{f_{m}}=4
\end{gathered}
$$

We estimate the effective bandwidth B_{c} (same for both PM and FM) of the modulated signal using Carson's rule (look on wikipedia for this!):

$$
B_{c} \approx 2(\beta+1) W
$$

According to OWN, $B_{c}=2 \beta W$ (both answers are acceptable; we don't expect you to wiki to solve problems :-)).

$$
B_{c}=2(4+1) f_{m}=10 \mathrm{KHz}
$$

For SSB, the bandwidth of the modulated signal is $f_{m}=1 \mathrm{KHz}$. I have only considered the positive side bands in this problem. If you wish to include the negative side bands, then simply scale B_{c} by a factor of 2 . Also, notice that B_{c} is directly proportional to f_{m}. Therefore, when f_{m} is doubled:

$$
B_{c}=20 \mathrm{KHz}
$$

Problem 2 (Nyquist Pulses.)

(a)

$$
\begin{aligned}
\delta[n] & =p\left(n T_{s}\right) \\
\sum_{n=-\infty}^{\infty} \delta[n] \delta\left(t-n T_{s}\right) & =\sum_{n=-\infty}^{\infty} p\left(n T_{s}\right) \delta\left(t-n T_{s}\right) \\
\delta(t) & =\sum_{n=-\infty}^{\infty} p\left(n T_{s}\right) \delta\left(t-n T_{s}\right) \\
& =\sum_{n=-\infty}^{\infty} p(t) \cdot \delta\left(t-n T_{s}\right) \\
& =p(t) \sum_{n=-\infty}^{\infty} \delta\left(t-n T_{s}\right) \\
1 & =\frac{1}{2 \pi} \mathcal{F} \mathcal{T}\{p(t)\} * \mathcal{F} \mathcal{T}\left\{\sum_{n=-\infty}^{\infty} \delta\left(t-n T_{s}\right)\right\} \\
& =\frac{1}{2 \pi} P(j \omega) *\left(\frac{2 \pi}{T_{s}} \sum_{n=-\infty}^{\infty} \delta\left(j\left(\omega-n \frac{2 \pi}{T_{s}}\right)\right)\right. \\
& =\frac{1}{T_{s}} \sum_{n=-\infty}^{\infty} P\left(j\left(\omega-n \frac{2 \pi}{T_{s}}\right)\right) \\
& =\sum_{n=-\infty}^{\infty} P\left(j\left(\omega\left(\omega-n \frac{2 \pi}{T_{s}}\right)\right)\right.
\end{aligned}
$$

Problem 3

(Narrowband FM.) OWN Problem 8.45.
(a)

$$
\begin{aligned}
y(t) & =\cos \left(\omega_{c} t+m \int_{-\infty}^{t} x(\tau) d \tau\right) \\
\theta(t) & =\omega_{c} t+m \int_{-\infty}^{t} x(\tau) d \tau \\
\omega_{i}(t) & =\frac{d \theta(t)}{d t}=\omega_{c}+m x(t)
\end{aligned}
$$

(b)

Expanding $y(t)$, we get

$$
y(t)=\cos \left(\omega_{c} t\right) \cos \left(m \int_{-\infty}^{t} x(\tau) d \tau\right)-\sin \left(\omega_{c} t\right) \sin \left(m \int_{-\infty}^{t} x(\tau) d \tau\right)
$$

Let $z(t)=\int_{-\infty}^{t} x(\tau) d \tau$. Thus $Z(j \omega)=\frac{1}{j \omega} X(j \omega)+\pi X(0) \delta(\omega)=\frac{1}{j \omega} X(j \omega)$. Using Parseval's and the fact that $x(t)$ is band-limited and bounded, $\int_{-\infty}^{\infty}|z(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|\frac{X(j \omega)}{j \omega}\right|^{2} d \omega=\frac{1}{2 \pi} \int_{-\omega_{m}}^{\omega_{m}}\left|\frac{X(j \omega)}{j \omega}\right|^{2} d \omega=$ $M<\infty$. Thus $z(t)$ is bounded almost all of the time. Now applying the narrowband assumption, we assume that m is small enough to make $m \int_{-\infty}^{t} x(\tau) d \tau$ satisfy the small angle approximation. Therefore,

$$
\begin{aligned}
\cos \left(m \int_{-\infty}^{t} x(\tau) d \tau\right) & \approx 1 \\
\sin \left(m \int_{-\infty}^{t} x(\tau) d \tau\right) & \approx m \int_{-\infty}^{t} x(\tau) d \tau
\end{aligned}
$$

This implies that

$$
y(t) \approx \cos \left(\omega_{c} t\right)-\left(m \int_{-\infty}^{t} x(\tau) d \tau\right) \sin \left(\omega_{c} t\right)
$$

(c)

Let $y(t) \approx \cos \left(\omega_{c} t\right)-\left(m \int_{-\infty}^{t} x(\tau) d \tau\right) \sin \left(\omega_{c} t\right)$ and $z(t)=\int_{-\infty}^{t} x(\tau) d \tau$. Thus $Z(j \omega)=\frac{1}{j \omega} X(j \omega)$. Since $X(j \omega)=0$ for $|\omega|>\omega_{m}$ is band-limited, then $Z(j \omega)=0$ for $|\omega|>\omega_{m}$.

$$
\begin{aligned}
Y(j \omega) & \approx \pi\left[\delta\left(\omega-\omega_{c}\right)+\delta\left(\omega+\omega_{c}\right)\right]-\frac{m}{2 \pi} Z(j \omega) * \frac{\pi}{j}\left[\delta\left(\omega-\omega_{c}\right)-\delta\left(\omega+\omega_{c}\right)\right] \\
& \approx \pi\left[\delta\left(\omega-\omega_{c}\right)+\delta\left(\omega+\omega_{c}\right)\right]-\frac{m}{2 j}\left(Z\left(j\left(\omega-\omega_{c}\right)\right)-Z\left(j\left(\omega+\omega_{c}\right)\right)\right)
\end{aligned}
$$

Thus if the bandwidth of $x(t)$ is ω_{m}, then the bandwidth of $y(t)$ is $2 \omega_{m}$.

Problem 4 (Laplace Transforms.)
(a) OWN Problem 9.21 (c).

$$
x(t)=e^{2 t} u(-t)+e^{3 t} u(-t)
$$

We can find the following Laplace transform pairs in Table 9.2 of OWN:

$$
\begin{aligned}
e^{2 t} u(-t) & \longleftrightarrow-\frac{1}{s-2}, \text { with ROC } \operatorname{Re}\{s\}<2 \\
e^{3 t} u(-t) & \longleftrightarrow-\frac{1}{s-3}, \text { with } \operatorname{ROC} \operatorname{Re}\{s\}<3
\end{aligned}
$$

By the linearity property of the Laplace transform (see Table 9.1 of OWN)

$$
X(s)=-\frac{1}{s-2}-\frac{1}{s-3}=\frac{-2 s+5}{(s-2)(s-3)}
$$

with region of convergence $(\operatorname{ROC}) \operatorname{Re}\{s\}<2$. Thus $X(s)$ has a pole at 2 , another pole at 3 , and a zero at 2.5 .
(b) OWN Problem 9.21 (e).

$$
x(t)=|t| e^{-2|t|}=t e^{-2 t} u(t)-t e^{2 t} u(-t)
$$

Using the Laplace transform tables again, we find the following Laplace transform pairs in OWN Table 9.2

$$
\begin{aligned}
e^{-2 t} u(t) & \longleftrightarrow \frac{1}{s+2}, \text { with } \operatorname{ROC} \operatorname{Re}\{s\}>-2 \\
e^{2 t} u(-t) & \longleftrightarrow-\frac{1}{s-2}, \text { with } \operatorname{ROC} \operatorname{Re}\{s\}<2
\end{aligned}
$$

By the differentiation in the s-domain property, in OWN Table 9.1,

$$
\begin{aligned}
t e^{-2 t} u(t) & \longleftrightarrow \quad-\frac{d}{d s}\left(\frac{1}{s+2}\right)=\frac{1}{(s+2)^{2}} \\
-t e^{2 t} u(-t) & \longleftrightarrow \frac{d}{d s}\left(-\frac{1}{s-2}\right)=\frac{1}{(s-2)^{2}}
\end{aligned}
$$

Finally by the linearity property,

$$
X(s)=\frac{1}{(s+2)^{2}}+\frac{1}{(s-2)^{2}}=\frac{2\left(s^{2}+4\right)}{(s+2)^{2}(s-2)^{2}}
$$

with ROC $-2<\operatorname{Re}\{s\}<2$. Thus $X(s)$ has two poles at -2 , two poles at 2 , and two zeros at 0 .

Problem 5(Region of convergence.)

OWN 9.23. The four pole-zero plots shown may have the following possible ROCs:

- Top Left (TL): $\Re\{s\}<-2$ or $-2<\Re\{s\}<2$ or $\Re\{s\}>2$
- Top Right (TR): $\Re\{s\}<-2$ or $\Re\{s\}>-2$
- Bottom Left (BL): $\Re\{s\}<2$ or $\Re\{s\}>2$
- Bottom Right (BR): Entire s-plane

Also, suppose that the signal $x(t)$ has Laplace transform $X(s)$ with ROC R

- (1)

If $x(t) e^{-3 t}$ is absolutely integrable, then the ROC of $x(t)$ must contain the line $\Re\{s\}=3$. This can be seen by looking at the definition of the ROC in equation 9.36 in OWN. The ROC R of $x(t)$ is:
(TL) $\Re\{s\}>2,(\mathrm{TR}) \Re\{s\}>-2,(\mathrm{BL}) \Re\{s\}>2,(\mathrm{BR})$ Entire s-plane

- (2)

We know from Table 9.2 that $e^{-t} u(t)$ has Laplace transform $\frac{1}{s+1}$ with ROC $\Re\{s\}>-1$. From Table 9.1, the Laplace transform of $x(t) \star\left[e^{-t} u(t)\right]$ is

$$
\frac{X(s)}{s+1}
$$

with ROC $R_{2}=R \cap[\Re\{s\}>-1]$. If $x(t) \star\left[e^{-t} u(t)\right]$ is absolutely integrable, then R_{2} must include the $j \omega$ axis, which means that R must include the $j \omega$ axis. The ROC R is:
(TL) $-2<\Re\{s\}<2$, (TR) $\Re\{s\}>-2,(\mathrm{BL}) \Re\{s\}<2$, (BR) Entire s-plane

- (3)

If $x(t)=0$ for $t>1$, then $x(t)$ is left-sided or finite duration. This implies that if $\Re\{s\}=\sigma_{1}$ is in the ROC, then all values of s for which $\Re\{s\}<\sigma_{1}$ will also be in the ROC. The ROC R is:
(TL) $\Re\{s\}<-2,(\mathrm{TR}) \Re\{s\}<-2,(\mathrm{BL}) \Re\{s\}<2,(\mathrm{BR})$ Entire s-plane

- (4)

If $x(t)=0$ for $t<-1$, then $x(t)$ is right-sided or finite duration. This implies that if $\Re\{s\}=\sigma_{1}$ is in the ROC, then all values of s for which $\Re\{s\}>\sigma_{1}$ will also be in the ROC. The ROC R is: (TL) $\Re\{s\}>2$, (TR) $\Re\{s\}>-2$, (BL) $\Re\{s\}>2$, (BR) Entire s-plane

Problem 6 (Inverse Laplace.)

(a) OWN Problem 9.22 (a).

Using the Laplace transform pairs Table 9.2 of OWN, we can immediately find the inverse Laplace transform of $X(s)$ to be $x(t)=\frac{1}{3} \sin (3 t) u(t)$. Alternatively we can use partial fraction expansions to find the inverse.

$$
\begin{aligned}
X(s)= & \frac{1}{s^{2}+9} \\
= & \frac{j / 6}{s+j 3}+\frac{-j / 6}{s-j 3} \\
& \text { for } \operatorname{Re}(s)>0 \\
x(t)= & \frac{j}{6} e^{-j 3 t} u(t)-\frac{j}{6} e^{j 3 t} u(t) \\
= & -\frac{j}{6} 2 j \sin (3 t) u(t) \\
= & \frac{1}{3} \sin (3 t) u(t)
\end{aligned}
$$

(b) OWN Problem 9.22 (b).

$$
\begin{aligned}
X(s)= & \frac{s}{s^{2}+9} \\
= & \frac{1 / 2}{s+j 3}+\frac{1 / 2}{s-j 3} \\
& \text { for } \operatorname{Re}(s)<0 \\
x(t)= & -\frac{1}{2} e^{-j 3 t} u(-t)-\frac{1}{2} e^{j 3 t} u(-t) \\
= & -\cos (3 t) u(-t)
\end{aligned}
$$

