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Problem 1 (Angle Modulations.)

The general form of an angle modulated signal:

A cos(2πfct + kpam(t)) (PM)

A cos(2πfct + kfa

∫

m(t)) (FM)

The modulation index is defined as:

βp = kpamax[|m(t)|] = ∆φmax (PM)

βf =
kfamax[|m(t)|]

W
=

∆fmax

W
(FM)

Where ∆φmax and ∆fmax are the maximum phase and frequency deviations respectively. W is the
bandwidth of the modulating signal in Hz (i.e. m(t) is bandlimited to W ). In this problem, the
modulated signal:

u(t) = 100 cos(2πfct + 4 sin 2πfmt)

The instantaneous phase φ(t) = 2πfct + 4 sin(2πfmt) , the instantaneous frequency f(t) = 1
2π

dφ(t)
dt

=
fc + 4fm cos(2πfmt) , and W = fm .

⇒ ∆φmax = 4,∆fmax = 4fm

⇒ βp = ∆φmax = 4, βf =
∆fmax

fm

= 4

We estimate the effective bandwidth Bc (same for both PM and FM) of the modulated signal using
Carson’s rule (look on wikipedia for this!):

Bc ≈ 2(β + 1)W

According to OWN, Bc = 2βW (both answers are acceptable; we don’t expect you to wiki to solve
problems :-) ).

Bc = 2(4 + 1)fm = 10KHz

For SSB, the bandwidth of the modulated signal is fm = 1KHz. I have only considered the positive side
bands in this problem. If you wish to include the negative side bands, then simply scale Bc by a factor
of 2 . Also, notice that Bc is directly proportional to fm . Therefore, when fm is doubled:
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Bc = 20KHz

Problem 2 (Nyquist Pulses.)

(a)

δ[n] = p(nTs)
∞
∑

n=−∞

δ[n]δ(t− nTs) =
∞
∑

n=−∞

p(nTs)δ(t− nTs)

δ(t) =

∞
∑

n=−∞

p(nTs)δ(t− nTs)

=

∞
∑

n=−∞

p(t) · δ(t− nTs)

= p(t)

∞
∑

n=−∞

δ(t− nTs)

FT {δ(t)} = FT {p(t)
∞
∑

n=−∞

δ(t− nTs)}

1 =
1

2π
FT {p(t)} ∗ FT {

∞
∑

n=−∞

δ(t− nTs)}

=
1

2π
P (jω) ∗ (

2π

Ts

∞
∑

n=−∞

δ(j(ω − n
2π

Ts

))

=
1

Ts

∞
∑

n=−∞

P (j(ω − n
2π

Ts

))

Ts =
∞
∑

n=−∞

P (j(ω − n
2π

Ts

))

Problem 3

(Narrowband FM.) OWN Problem 8.45.

(a)

y(t) = cos(ωct + m

∫ t

−∞

x(τ)dτ)

θ(t) = ωct + m

∫ t

−∞

x(τ)dτ

ωi(t) =
dθ(t)

dt
= ωc + mx(t)

(b)

Expanding y(t) , we get

2



y(t) = cos(ωct) cos

(

m

∫ t

−∞

x(τ)dτ

)

− sin(ωct) sin

(

m

∫ t

−∞

x(τ)dτ

)

.

Let z(t) =
∫ t

−∞
x(τ)dτ . Thus Z(jω) = 1

jω
X(jω) + πX(0)δ(ω) = 1

jω
X(jω) . Using Parseval’s and the

fact that x(t) is band-limited and bounded,
∫ ∞

−∞
|z(t)|2dt = 1

2π

∫ ∞

−∞

∣

∣

∣

X(jω)
jω

∣

∣

∣

2

dω = 1
2π

∫ ωm

−ωm

∣

∣

∣

X(jω)
jω

∣

∣

∣

2

dω =

M < ∞ . Thus z(t) is bounded almost all of the time. Now applying the narrowband assumption, we

assume that m is small enough to make m
∫ t

−∞
x(τ)dτ satisfy the small angle approximation. Therefore,

cos

(

m

∫ t

−∞

x(τ)dτ

)

≈ 1

sin

(

m

∫ t

−∞

x(τ)dτ

)

≈ m

∫ t

−∞

x(τ)dτ

This implies that

y(t) ≈ cos(ωct)−

(

m

∫ t

−∞

x(τ)dτ

)

sin(ωct).

(c)

Let y(t) ≈ cos(ωct)−
(

m
∫ t

−∞
x(τ)dτ

)

sin(ωct) and z(t) =
∫ t

−∞
x(τ)dτ . Thus Z(jω) = 1

jω
X(jω) . Since

X(jω) = 0 for |ω| > ωm is band-limited, then Z(jω) = 0 for |ω| > ωm .

Y (jω) ≈ π[δ(ω − ωc) + δ(ω + ωc)]−
m

2π
Z(jω) ∗

π

j
[δ(ω − ωc)− δ(ω + ωc)]

≈ π[δ(ω − ωc) + δ(ω + ωc)]−
m

2j
(Z(j(ω − ωc))− Z(j(ω + ωc)))

Thus if the bandwidth of x(t) is ωm , then the bandwidth of y(t) is 2ωm .

Problem 4 (Laplace Transforms.)

(a) OWN Problem 9.21 (c).

x(t) = e2tu(−t) + e3tu(−t)

We can find the following Laplace transform pairs in Table 9.2 of OWN:

e2tu(−t) ←→ −
1

s− 2
, with ROC Re{s} < 2

e3tu(−t) ←→ −
1

s− 3
, with ROC Re{s} < 3

By the linearity property of the Laplace transform (see Table 9.1 of OWN)

X(s) = −
1

s− 2
−

1

s− 3
=

−2s + 5

(s− 2)(s− 3)
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with region of convergence (ROC) Re{s} < 2 . Thus X(s) has a pole at 2 , another pole at 3 , and a
zero at 2.5 .

(b) OWN Problem 9.21 (e).

x(t) = |t|e−2|t| = te−2tu(t)− te2tu(−t)

Using the Laplace transform tables again, we find the following Laplace transform pairs in OWN Table
9.2

e−2tu(t) ←→
1

s + 2
, with ROC Re{s} > −2

e2tu(−t) ←→ −
1

s− 2
, with ROC Re{s} < 2

By the differentiation in the s-domain property, in OWN Table 9.1,

te−2tu(t) ←→ −
d

ds

(

1

s + 2

)

=
1

(s + 2)2

−te2tu(−t) ←→
d

ds

(

−
1

s− 2

)

=
1

(s− 2)2

Finally by the linearity property,

X(s) =
1

(s + 2)2
+

1

(s− 2)2
=

2(s2 + 4)

(s + 2)2(s− 2)2

with ROC −2 < Re{s} < 2 . Thus X(s) has two poles at −2 , two poles at 2 , and two zeros at 0 .

Problem 5(Region of convergence.)

OWN 9.23. The four pole-zero plots shown may have the following possible ROCs:

• Top Left (TL): ℜ{s} < −2 or −2 < ℜ{s} < 2 or ℜ{s} > 2

• Top Right (TR): ℜ{s} < −2 or ℜ{s} > −2

• Bottom Left (BL): ℜ{s} < 2 or ℜ{s} > 2

• Bottom Right (BR): Entire s -plane

Also, suppose that the signal x(t) has Laplace transform X(s) with ROC R

• (1)

If x(t)e−3t is absolutely integrable, then the ROC of x(t) must contain the line ℜ{s} = 3 . This
can be seen by looking at the definition of the ROC in equation 9.36 in OWN. The ROC R of x(t)
is:

(TL) ℜ{s} > 2 , (TR) ℜ{s} > −2 , (BL) ℜ{s} > 2 , (BR) Entire s -plane
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• (2)

We know from Table 9.2 that e−tu(t) has Laplace transform 1
s+1 with ROC ℜ{s} > −1 . From

Table 9.1, the Laplace transform of x(t) ⋆ [e−tu(t)] is

X(s)

s + 1

with ROC R2 = R∩ [ℜ{s} > −1] . If x(t)⋆ [e−tu(t)] is absolutely integrable, then R2 must include
the jω axis, which means that R must include the jω axis. The ROC R is:

(TL) −2 < ℜ{s} < 2 , (TR) ℜ{s} > −2 , (BL) ℜ{s} < 2 , (BR) Entire s -plane

• (3)

If x(t) = 0 for t > 1 , then x(t) is left-sided or finite duration. This implies that if ℜ{s} = σ1 is
in the ROC, then all values of s for which ℜ{s} < σ1 will also be in the ROC. The ROC R is:

(TL) ℜ{s} < −2 , (TR) ℜ{s} < −2 , (BL) ℜ{s} < 2 , (BR) Entire s -plane

• (4)

If x(t) = 0 for t < −1 , then x(t) is right-sided or finite duration. This implies that if ℜ{s} = σ1

is in the ROC, then all values of s for which ℜ{s} > σ1 will also be in the ROC. The ROC R is:

(TL) ℜ{s} > 2 , (TR) ℜ{s} > −2 , (BL) ℜ{s} > 2 , (BR) Entire s -plane

Problem 6 (Inverse Laplace.)

(a) OWN Problem 9.22 (a).

Using the Laplace transform pairs Table 9.2 of OWN, we can immediately find the inverse Laplace
transform of X(s) to be x(t) = 1

3 sin(3t)u(t) . Alternatively we can use partial fraction expansions to
find the inverse.

X(s) =
1

s2 + 9

=
j/6

s + j3
+
−j/6

s− j3

for Re(s) > 0

x(t) =
j

6
e−j3tu(t)−

j

6
ej3tu(t)

= −
j

6
2j sin(3t)u(t)

=
1

3
sin(3t)u(t)

(b) OWN Problem 9.22 (b).

X(s) =
s

s2 + 9

=
1/2

s + j3
+

1/2

s− j3

for Re(s) < 0

x(t) = −
1

2
e−j3tu(−t)−

1

2
ej3tu(−t)

= − cos(3t)u(−t)
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