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Problem 1 (Angle Modulations.)

The general form of an angle modulated signal:

Acos(2m fot + kpam(t)) (PM)
Acos(2mfot + kya / m(t)) (FM)

The modulation index is defined as:

ﬂp = kpa’max“m(t)u = A¢maz (PM)

kramax{im(t)[] _ Afmae
W W

By = (FM)

Where A@qe and Afq, are the maximum phase and frequency deviations respectively. W is the
bandwidth of the modulating signal in Hz (i.e. m(¢) is bandlimited to W'). In this problem, the
modulated signal:

u(t) = 100 cos(27 fot + 4 8in 27 f,,t)

1 dé(t) _
2w dt T

The instantaneous phase ¢(t) = 2m f.t + 4sin(2n f,,,t), the instantaneous frequency f(t) =
fe+4fmcos(2mfint), and W = f,, .
= A¢maz = 47 AfrrLam = 4f7n

A fmaz
éﬂp:AQﬁmaz:Zlaﬂf: ;

We estimate the effective bandwidth B, (same for both PM and FM) of the modulated signal using
Carson’s rule (look on wikipedia for this!):

=4

B, =2(8+1)W

According to OWN, B, = 2W (both answers are acceptable; we don’t expect you to wiki to solve
problems :-) ).

B, =2(4+1)fn = 10KHz

For SSB, the bandwidth of the modulated signal is f,, = 1 KHz. I have only considered the positive side
bands in this problem. If you wish to include the negative side bands, then simply scale B, by a factor
of 2. Also, notice that B, is directly proportional to f,,. Therefore, when f,, is doubled:



B, = 20KHz

Problem 2 (Nyquist Pulses.)

(a)
d[n] = pnTs)
> onldt—nTy) = Y p(nT.)i(t —nTy)
5(t) = Y p(nTy)é(t —nT.)
= ) p(t)-6(t—nT.)
= p(t) > 6(t—nT.)
FT{5()} = FT{p(t) > 6(t—nT.)}
L= S FTOO) s FTL Y. 8- nT))
= ;P(jw)*(;:n;mé(j(w—niz))
— 7 X Plle-n7)
> _ 27
T, = n;wP(J(w—ni))
Problem 3
(Narrowband FM.) OWN Problem 8.45.
(a)
y(t) = cos(wct+m[ x(7)dr)
o(t) = wcter/t z(1)dr
wi(t) = d%(tt)zwc—kmx(t)
(b)

Expanding y(t), we get



y@)-—cos@qi)cos<n1]ﬁ;3x@ﬂd7)-—shmwcﬂshl(nﬁ/i”a(7)d7>.

Let z(t) = fi z(7)dr. Thus Z(jw) = .iX(jw) + WX(O)(S( ) = 1 X(jw). Using Parseval’s and the
fact that x(¢) is band-limited and bounded, f (t)|%dt = ‘X(J“’) dw = _m ‘X(j“) dw

7T
M < oo. Thus z(t) is bounded almost all of the tlme Now applymg the narrowband assumption, we
assume that m is small enough to make m f (7)dr satisfy the small angle approximation. Therefore,

t
cos (m / ) ~ 1
o0
t t
sin (m/ dT) o m/ z(T)dT
o0 — 00
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This implies that

(c)
Let y(t) ~ cos(wet) — (mf )d’T) sin(w.t) and z(t) = fioo x(7)dr. Thus Z(jw) = J%X(jw). Since
X(jw) =0 for |w| > wy, is band-limited, then Z(jw) =10 for |w| > wy, .

Y(jw) = 70w —we) +d(w+w:)]— 5

57 (20w — ) = (i + )

e 7)) — B+ )

Q

T[o(w — we) +0(w +we)] —

Thus if the bandwidth of z(t) is wy,, then the bandwidth of y(t) is 2wy, .

Problem 4 (Laplace Transforms.)
(a) OWN Problem 9.21 (c).

z(t) = e*u(—t) + e3tu(—t)

We can find the following Laplace transform pairs in Table 9.2 of OWN:

1
e*u(—t) —T—5° with ROC Re{s} < 2
s

, with ROC Re{s} < 3

1 1 —25+5
X(S):is—275—3:(3—2)(s—3)




with region of convergence (ROC) Re{s} < 2. Thus X(s) has a pole at 2, another pole at 3, and a
zero at 2.5.

(b) OWN Problem 9.21 (e).

x(t) = [tle 2 = te2tu(t) — te* u(—t)

Using the Laplace transform tables again, we find the following Laplace transform pairs in OWN Table
9.2

1 .
8_’_72 5 with ROC RC{S} > =2
eXu(—t) —% , with ROC Re{s} <2

s —

By the differentiation in the s-domain property, in OWN Table 9.1,

Finally by the linearity property,

1 1 2(s* +4)

X = rop Y oo2p ~ Gr2pe-2p

with ROC —2 < Re{s} < 2. Thus X(s) has two poles at —2, two poles at 2, and two zeros at 0.

Problem 5 (Region of convergence.)

OWN 9.23. The four pole-zero plots shown may have the following possible ROCs:

e Top Left (TL): R{s} < =2 or =2 < R{s} <2 or R{s} > 2
e Top Right (TR): R{s} < =2 or R{s} > -2
e Bottom Left (BL): R{s} <2 or R{s} > 2

e Bottom Right (BR): Entire s-plane

Also, suppose that the signal z(t) has Laplace transform X(s) with ROC R

e (1)
If x(t)e™3! is absolutely integrable, then the ROC of z(t) must contain the line R{s} = 3. This
can be seen by looking at the definition of the ROC in equation 9.36 in OWN. The ROC R of x(t)
is:

(TL) R{s} > 2, (TR) R{s} > -2, (BL) R{s} > 2, (BR) Entire s-plane



e (2)
We know from Table 9.2 that e ‘u(t) has Laplace transform
Table 9.1, the Laplace transform of z(t) x [e~tu(t)] is

ﬁ with ROC #{s} > —1. From
X(s)
s+1
with ROC Ry = RN[R{s} > —1]. If x(t)*[e tu(t)] is absolutely integrable, then Ry must include
the jw axis, which means that R must include the jw axis. The ROC R is:
(TL) -2 < R{s} <2, (TR) R{s} > -2, (BL) R{s} <2, (BR) Entire s-plane
* (3)

If 2(t) =0 for t > 1, then x(t) is left-sided or finite duration. This implies that if R{s} = oy is
in the ROC, then all values of s for which ${s} < o1 will also be in the ROC. The ROC R is:

(TL) R{s} < -2, (TR) R{s} < -2, (BL) R{s} <2, (BR) Entire s-plane
* (4)

If 2(t) =0 for t < —1, then x(t) is right-sided or finite duration. This implies that if R{s} = o
is in the ROC, then all values of s for which #{s} > o1 will also be in the ROC. The ROC R is:

(TL) R{s} > 2, (TR) R{s} > —2, (BL) R{s} > 2, (BR) Entire s-plane

Problem 6 (Inverse Laplace.)
(a) OWN Problem 9.22 (a).

Using the Laplace transform pairs Table 9.2 of OWN, we can immediately find the inverse Laplace
transform of X(s) to be x(t) = 3 sin(3t)u(t). Alternatively we can use partial fraction expansions to
find the inverse.
1

249

/6 —j/6
s+73  s—33
for Re(s) >0

a(t) = gerult) - gt
_ _%2jsnm3wu@)

— Laneoun
3
(b) OWN Problem 9.22 (b).

s
s2+9
1/2 1/2
s+33 s—33
for Re(s) <0
z(t) = —%e*jgtu(—t) - %ej?’tu(—t)

= —cos(3t)u(—t)




