Homework 1 Solutions

Email your scores to ee120.gsi@gmail.com
Check the course website for more details on the homework self-grading policy.
Problem 1 (Complex numbers.)
(a)

Cartesian: $e^{j 5 \pi}=\cos (5 \pi)+j \sin (5 \pi)=-1$
Polar: $e^{j 5 \pi}=e^{j \pi}$
Cartesian: $\left(\frac{1}{3} e^{j \pi / 4}\right)^{*}=\frac{\sqrt{2}}{6}-j \frac{\sqrt{2}}{6}$
Polar: $\left(\frac{1}{3} e^{j \pi / 4}\right)^{*}=\frac{1}{3} e^{j(-\pi / 4)}$
Cartesian: $j^{-j}=\left(e^{j \pi / 2}\right)^{-j}=e^{\pi / 2}$
Polar: $j^{-j}=e^{\pi / 2}=e^{\pi / 2} \cdot e^{j 0}$
(b)

$$
\frac{a+j b}{c+j d}=\frac{(a+j b)(c-j d)}{(c+j d)(c-j d)}=\frac{a c+b d+j(b c-a d)}{c^{2}+d^{2}}
$$

We must examine the real and imaginary parts to determine the quadrant in the complex plane in which the complex number lies.

$$
\frac{a+j b}{c+j d}= \begin{cases}\sqrt{\frac{a^{2}+b^{2}}{c^{2}+d^{2}}} e^{j\left(\arctan \left(\frac{b c-a d}{a c+b d}\right)+\pi\right),} & a c+b d<0 \text { and } b c-a d>0 \\ \sqrt{\frac{a^{2}+b^{2}}{c^{2}+d^{2}}} e^{j\left(\arctan \left(\frac{b c-a d}{a c+b d}\right)-\pi\right)}, & a c+b d<0 \text { and } b c-a d<0 \\ \sqrt{\frac{a^{2}+b^{2}}{c^{2}+d^{2}}} e^{j\left(\arctan \left(\frac{b c-a d}{a c+b d}\right)\right)}, & \text { otherwise }\end{cases}
$$

(c) See plots in Figure 1.

Figure 1: Problem 1(c).

Problem 2 (Implementation of Complex Systems.)

$$
\begin{aligned}
y[n] & =(2-j 3) x[n]+(3+j) x[n-1] \\
y_{R}[n]+j y_{I}[n] & =(2-j 3)\left(x_{R}[n]+j x_{I}[n]\right)+(3+j)\left(x_{R}[n-1]+j x_{I}[n-1]\right) \\
y_{R}[n]+j y_{I}[n] & =2 x_{R}[n]+j 2 x_{I}[n]-j 3 x_{R}[n]+3 x_{I}[n]+3 x_{R}[n-1]+j 3 x_{I}[n-1]+j x_{R}[n-1]-x_{I}[n-1] \\
y_{R}[n]+j y_{I}[n] & =\left(2 x_{R}[n]+3 x_{I}[n]+3 x_{R}[n-1]-x_{I}[n-1]\right)+j\left(2 x_{I}[n]-3 x_{R}[n]+3 x_{I}[n-1]+x_{R}[n-1]\right) \\
y_{R}[n] & =2 x_{R}[n]+3 x_{I}[n]+3 x_{R}[n-1]-x_{I}[n-1] \\
y_{I}[n] & =2 x_{I}[n]-3 x_{R}[n]+3 x_{I}[n-1]+x_{R}[n-1]
\end{aligned}
$$

The block diagram is shown in Figure 2

Figure 2: Problem 2.

Problem 3 (Elementary functions and their graphs.)
(a)

$$
\begin{aligned}
\operatorname{Re}\{y(t)\} & =\cos (2 \pi t) \\
\operatorname{Im}\{y(t)\} & =\sin (2 \pi t) \\
|y(t)| & =1 \\
\arg (y(t)) & =2 \pi(t-\lfloor t\rfloor)
\end{aligned}
$$

See plots in Figure 3.

Figure 3: Problem 3(a).

Problem 4 (Periodic continuous-time signals.)
(a)
$\cos \left(\frac{\pi}{3} t\right)$ has a period of $\frac{2 \pi}{\pi / 3}=6$.
$\cos \left(\frac{2 \pi}{5} t\right)$ has a period of $\frac{2 \pi}{2 \pi / 5}=5$.
The fundamental period is 30 , the least common multiple of 6 and 5 .
(b)
$w(t)=\cos \left(\frac{\pi}{3} t\right)+\cos (t)$ is aperiodic.
$\cos \left(\frac{\pi}{3} t\right)$ has a period of $\frac{2 \pi}{\pi / 3}=6$ and $\cos (t)$ has a period of 2π. Since one is rational and one is irrational, they have no common multiples.

Problem 5 (Transformations of functions.)
See Figure 4.

Figure 4: Problem 5.

Problem 6 (Periodic discrete-time signals.)
(a)
$y_{1}[n]=\cos \left(\frac{\pi}{3} n\right)$ has a period of 6 .
$y_{2}[n]=\cos \left(\frac{3 \pi}{5} n\right)$ has a period of 10 .
See plots in Figure 5.
(b)

The fundamental period is 30 , the least common multiple of 6 and 10 .
See plots in Figure 5.
(c)
$z[n]=\cos (2 n)$ is aperiodic. There is no integer n such that $2 n$ is divisible by 2π.

Figure 5: Problem 6.

Problem 7 (Properties of systems.)
Let $f(t) \triangleq k_{1} x_{1}(t)+k_{2} x_{2}(t)$ where k_{1}, k_{2} are constants.
Let $g(t) \triangleq x(t-\tau)$ where τ is a constant.
(a) $\mathcal{H}[x(t)]=x(a t+b)$ is linear and not time-invariant.

$$
\begin{aligned}
\mathcal{H}[f(t)] & =f(a t+b)=k_{1} x_{1}(a t+b)+k_{2} x_{2}(a t+b) \\
& =k_{1} \mathcal{H}\left[x_{1}(t)\right]+k_{2} \mathcal{H}\left[x_{2}(t)\right] \\
\mathcal{H}[g(t)] & =g(a t+b)=x(a t+b-\tau) \\
& \neq x(a(t-\tau)+b)
\end{aligned}
$$

The last line is the result of shifting the output of $\mathcal{H}[x(t)]$, i.e. $x(a t+b)$, by τ.
(b) $\mathcal{H}[x(t)]=x\left(a t^{2}+b\right)$ is linear and not time-invariant.

$$
\begin{aligned}
\mathcal{H}[f(t)] & =f\left(a t^{2}+b\right)=k_{1} x_{1}\left(a t^{2}+b\right)+k_{2} x_{2}\left(a t^{2}+b\right) \\
& =k_{1} \mathcal{H}\left[x_{1}(t)\right]+k_{2} \mathcal{H}\left[x_{2}(t)\right] \\
\mathcal{H}[g(t)] & =g\left(a t^{2}+b\right)=x\left(a t^{2}+b-\tau\right) \\
& \neq x\left(a(t-\tau)^{2}+b\right)
\end{aligned}
$$

The last line is the result of shifting the output of $\mathcal{H}[x(t)]$, i.e. $x\left(a t^{2}+b\right)$, by τ.

Problem 8 (Properties of systems.)
(a) $\mathcal{H}[x(t)]=x(a t)+b$ is not linear and not time-invariant.

$$
\begin{aligned}
\mathcal{H}[f(t)] & =f(a t)+b=k_{1} x_{1}(a t)+k_{2} x_{2}(a t)+b \\
& \neq k_{1} \mathcal{H}\left[x_{1}(t)\right]+k_{2} \mathcal{H}\left[x_{2}(t)\right]=k_{1} x_{1}(a t)+k_{1} b+k_{2} x_{2}(a t)+k_{2} b \\
\mathcal{H}[g(t)] & =g(a t)+b=x(a t-\tau)+b \\
& \neq x(a(t-\tau))+b
\end{aligned}
$$

The last line is the result of shifting the output of $\mathcal{H}[x(t)]$, i.e. $x(a t)+b$, by τ.
(b) $\mathcal{H}[x(t)]=\frac{d}{d t} x(t)$ is linear and time-invariant.

$$
\begin{aligned}
\mathcal{H}[f(t)] & =\frac{d}{d t} f(a)=k_{1} \frac{d}{d t} x_{1}(t)+k_{2} \frac{d}{d t} x_{2}(t) \\
& =k_{1} \mathcal{H}\left[x_{1}(t)\right]+k_{2} \mathcal{H}\left[x_{2}(t)\right] \\
\mathcal{H}[g(t)] & =\frac{d}{d t} g(t) \\
& =\frac{d}{d t} x(t-\tau)
\end{aligned}
$$

The above line is the result of shifting the output of $\mathcal{H}[x(t)]$, i.e. $\frac{d}{d t} x(t)$, by τ.

Problem 9 (Properties of continuous-time systems.)
(a) $y(t)=x(t) \frac{e^{t}+e^{-t}}{2}$
(i) memoryless (OWN definition): The current output value $y(t)$ is determined by the value of the current input $x(t)$.
not memoryless (LV/Handout 1 definition): The output at time t requires knowledge of the value of t.
(ii) unstable: For the trivially bounded input $x(t)=1 \forall t$, the output $y(t)$ is unbounded as $t \rightarrow \pm \infty$.
(iii) causal: The current output value $y(t)$ does not depend on future inputs $x(\tau), \tau>t$.
(iv) linear:

Let $y_{1}(t)=x_{1}(t) \frac{e^{t}+e^{-t}}{2}$ and $y_{2}(t)=x_{2}(t) \frac{e^{t}+e^{-t}}{2}$.
If the input to the system is $f(t)=k_{1} x_{1}(t)+k_{2} x_{2}(t)$, where k_{1}, k_{2} are constants,
then the output is $g(t)=f(t) \frac{e^{t}+e^{-t}}{2}=\left(k_{1} x_{1}(t)+k_{2} x_{2}(t)\right) \frac{e^{t}+e^{-t}}{2}=k_{1} y_{1}(t)+k_{2} y_{2}(t)$.
(v) not time-invariant:

If the input is $f(t)=x(t-\tau)$, where τ is a constant,
then the output is $g(t)=f(t) \frac{e^{t}+e^{-t}}{2}=x(t-\tau) \frac{e^{t}+e^{-t}}{2}$.
Since $y(t-\tau)=x(t-\tau) \frac{e^{t-\tau}+e^{-(t-\tau)}}{2}, g(t) \neq y(t-\tau)$.
(b) $y(t)=\operatorname{Im}\{x(t)\}$
(i) memoryless: The output at time t_{0} depends only on the input at the same time t_{0}.
(ii) stable: If $|x(t)|<\infty$, then $|\operatorname{Im}\{x(t)\}|<\infty$.
(iii) causal: At each time, the output depends only on the current input.
(iv) non-linear:

Consider an input $x_{1}(t)=j t$ which produces the output $y_{1}(t)=t$
The input $x_{2}(t)=j x_{1}(t)=-t$ produces the output $y_{2}(t)=0$, which is not equal to $j y_{1}(t)$
(v) time-invariant:

If the input is $f(t)=x(t-\tau)$, where τ is a constant,
then the output is $g(t)=\operatorname{Im}\{f(t)\}=\operatorname{Im}\{x(t-\tau)\}$.
Since $y(t-\tau)=\operatorname{Im}\{x(t-\tau)\}$, the system is time-invariant.

Problem 10 (Properties of continuous-time systems.)
(a) $y(t)=\int_{-\infty}^{t / 2} x(3 \alpha) d \alpha=\frac{1}{3} \int_{-\infty}^{3 t / 2} x(\beta) d \beta$
(i) not memoryless: The current output $y(t)$ uses many past values of the input $x(\tau), \tau<t$.
(ii) unstable: $y(t)=\infty \quad \forall t$ if $x(t)=u(-t)$.
(iii) not causal: For $t>0$, the current output value $y(t)$ depends on future inputs $x(\tau), \tau>t$.
(iv) linear: Integration is linear.
(v) not time-invariant:

If the input is $f(t)=x(t-\tau)$, where τ is a constant,
then the output is $g(t)=\frac{1}{3} \int_{-\infty}^{3 t / 2} f(\beta) d \beta=\frac{1}{3} \int_{-\infty}^{3 t / 2} x(\beta-\tau) d \beta=\frac{1}{3} \int_{-\infty}^{3 t / 2-\tau} x(\sigma) d \sigma$.
Since $y(t-\tau)=\frac{1}{3} \int_{-\infty}^{3(t-\tau) / 2} x(\beta) d \beta, g(t) \neq y(t-\tau)$.
(b) $y(t)=x(-t / 2)$
(i) not memoryless: The output at time t cannot be determined from the input at time t.
(ii) stable: If $x(t)$ is bounded, then $y(t)$ is bounded.
(iii) noncausal: For $t<0$, the current output $y(t)$ depends on a future value of $x(t)$.
(iv) linear:

Let $y_{1}(t)=x_{1}(-t / 2)$ and $y_{2}(t)=x_{2}(-t / 2)$.
If the input is $f(t)=k_{1} x_{1}(t)+k_{2} x_{2}(t)$, where k_{1}, k_{2} are constants,
then the output is $g(t)=f(-t / 2)=k_{1} x_{1}(-t / 2)+k_{2} x_{2}(-t / 2)=k_{1} y_{1}(t)+k_{2} y_{2}(t)$.
(v) not time-invariant:

If the input is $f(t)=x(t-\tau)$, where τ is a constant,
then the output is $g(t)=f(-t / 2)=x(-t / 2-\tau)$.
Since $y(t-\tau)=x(-(t-\tau) / 2), g(t) \neq y(t-\tau)$.

Problem 11 (Properties of discrete-time systems.)
(a) $y[n]=\sum_{k=-\infty}^{n} x[k+1]=\sum_{l=-\infty}^{n+1} x[l]$
(i) not memoryless: The current output $y[n]$ depends on many past input values $x[\tau], \tau<n$.
(ii) not stable: $y[n]=\infty \quad \forall n$ if $x[n]=u[-n]$.
(iii) not causal: The current output $y[n]$ depends on future input $x[n+1]$.
(iv) linear:

Let $y_{1}[n]=\sum_{l=-\infty}^{n+1} x_{1}[l]$ and $y_{2}[n]=\sum_{l=-\infty}^{n+1} x_{2}[l]$.
If the input is $f[n]=k_{1} x_{1}[n]+k_{2} x_{2}[n]$, where k_{1}, k_{2} are constants,
then the output is $g[n]=\sum_{l=-\infty}^{n+1} f[l]=\sum_{l=-\infty}^{n+1}\left(k_{1} x_{1}[l]+k_{2} x_{2}[l]\right)=k_{1} y_{1}[n]+k_{2} y_{2}[n]$.
(v) time-invariant:

If the input is $f[n]=x[n-\tau]$, where τ is a constant,
then the output is $g[n]=\sum_{l=-\infty}^{n+1} f[l]=\sum_{l=-\infty}^{n+1} x[l-\tau]=\sum_{m=-\infty}^{n+1-\tau} x[m]$.
Therefore $y[n-\tau]=g[n]$.
(b) $y[n]=x[n] \cdot \sum_{k=-\infty}^{\infty} \delta[n-3 k]$

Observe that $y[n]=x[n]$ if n is a multiple of 3 , and $y[n]=0$ otherwise.
(i) memoryless (OWN definition): The current output $y[n]$ does not depend on past or future inputs $x[n]$.
not memoryless (LV/Handout 1 definition): The output at time n requires knowledge of the value of n.
(ii) stable: $y[n]$ is bounded if $x[n]$ is bounded.
(iii) causal: The current output does not depend on future inputs.
(iv) linear:

Let $y_{1}[n]=x_{1}[n] \sum_{k=-\infty}^{\infty} \delta[n-3 k]$ and $y_{2}[n]=x_{2}[n] \sum_{k=-\infty}^{\infty} \delta[n-3 k]$.
If the input is $f[n]=k_{1} x_{1}[n]+k_{2} x_{2}[n]$, where k_{1}, k_{2} are constants,
then the output is $g[n]=f[n] \sum_{k=-\infty}^{\infty} \delta[n-3 k]=k_{1} y_{1}[n]+k_{2} y_{2}[n]$.
(v) not time-invariant:

If the input is $f[n]=x[n-\tau]$, where τ is a constant,
then the output is $g[n]=f[n] \sum_{k=-\infty}^{\infty} \delta[n-3 k]=x[n-\tau] \sum_{k=-\infty}^{\infty} \delta[n-3 k]$.
Since $y[n-\tau]=x[n-\tau] \sum_{k=-\infty}^{\infty} \delta[n-\tau-3 k], g[n] \neq y[n-\tau]$.

Problem 12 (Convolution of step functions.)
(a) $h(t)=u(t)-u(t-1), x(t)=u(t)$

$$
\begin{aligned}
h(t) * x(t) & =\int_{-\infty}^{\infty}(u(\tau)-u(\tau-1)) \cdot u(t-\tau) d \tau \\
& =\int_{-\infty}^{t} u(\tau)-u(\tau-1) d \tau \\
& =u(t) \cdot \int_{0}^{\min (t, 1)} d \tau \\
& = \begin{cases}0, & t<0 \\
t, & 0 \leq t \leq 1 \\
1, & t>1\end{cases}
\end{aligned}
$$

See Figure 6.
(b) $h(t)=u(t)-u(t-1), x(t)=u(t)-u(t-1)$

We will use the linearity and time invariance properties of the system $h(t)$ to make use of part (a) of this problem. Suppose $u(t)$ is the input to the system as in part (a). Call the output $z(t)$. Now, the input is $x(t)=u(t)-u(t-1)$, the difference of $u(t)$ and a shifted copy of $u(t)$. Using the fact that the system is linear and time invariant, the output should now be $z(t)-z(t-1)$.

$$
\begin{aligned}
h(t) * x(t) & =[u(t) *(u(t)-u(t-1))]-[u(t-1) *(u(t)-u(t-1))] \\
& =z(t)-z(t-1) \\
& = \begin{cases}t, & 0 \leq t \leq 1 \\
2-t, & 1 \leq t \leq 2 \\
0, & t<0 \text { or } t>2\end{cases}
\end{aligned}
$$

See Figure 7.

Figure 6: Problem 12(a).

Figure 7: Problem 12(b).

Problem 13 (LTI systems.)
We observe that $z(t)=-x(t-1)+2 x(t-2)$. Because the system is LTI, the new output is equal to $-y(t-1)+2 y(t-2)$. The output is plotted in Figure 8.

Figure 8: Problem 13.

Problem 14 (Convolution via matlab.)
The following Matlab code generates Figure 9.

```
t = -2:.01:2;
xa = (t>=0);
ha = zeros(size(t));
ha(t>=0) = exp(-(0:.01:2));
za = conv(ha,xa);
xb = ha;
hb = zeros(size(t));
hb (t>=0) = exp(-.5.*(0:.01:2));
zb = conv(hb,xb);
```

The Matlab command $\mathbf{z}=\operatorname{conv}(\mathrm{h}, \mathrm{x})$ convolves vectors \mathbf{h} (of length a) and \mathbf{x} (of length b), and produces a vector \mathbf{z} of length $a+b-1$. Matlab effectively computes the convolution sum of the discretetime signals $g[n]$ and $y[n]$, whose nonzero values are contained in \mathbf{h} and \mathbf{x}, and assumes that the signals are zero otherwise. Thus \mathbf{z} contains the nonzero values of $g[n] * y[n]$. Since our functions $h(t)$ and $x(t)$ are not zero outside of $t \in[-2,2]$, we need to discard the extraneous (and incorrect) outputs.
Furthermore, because we are approximating $\int h(\tau) x(t-\tau) d \tau$ with $\sum_{\tau} h(\tau) x(t-\tau) \Delta \tau$, we need to multiply the output of conv, $\sum_{\tau} h(\tau) x(t-\tau)$, by $\Delta \tau=0.01$.

```
za = za(201:601)./100;
zb = zb(201:601)./100;
```

Now we are ready to plot the figures.

```
subplot(2,3,1); plot(t,ha); axis([-2 2 -.5 1.5]); title('8a: h(t)');
subplot(2,3,2); stairs(t,xa); axis([-2 2 -. 5 1.5]); title('8a: x(t)');
subplot(2,3,3); plot(t,za); axis([-2 2 -. 5 1.5]); title('8a: conv(h,x)');
subplot(2,3,4); plot(t,hb); axis([-2 2 -. 5 1.5]); title('8b: h(t)');
subplot(2,3,5); plot(t,xb); axis([-2 2 -. . 5 1.5]); title('8b: x(t)');
subplot(2,3,6); plot(t,zb); axis([-2 2 -.5 1.5]); title('8b: conv(h,x)');
```


Figure 9: Problem 14.

