Quiz 1

Name:
SID:

Instructions:

- Make sure you write your name and SID.
- The exam is closed book.
- Use of calculators is allowed.
- No partial credit will be given.

Formulas that may be of use:

- Geometric series $\sum_{k=l}^{m} \alpha^{k}=\frac{\alpha^{l}-\alpha^{m+1}}{1-\alpha}$
- Continuous time Fourier series:
$x(t)=\sum_{k=-\infty}^{+\infty} a_{k} e^{j k \omega_{0} t}=\sum_{k=-\infty}^{+\infty} a_{k} e^{j k(2 \pi / T) t}$,
$a_{k}=\frac{1}{T} \int_{T} x(t) e^{-j k \omega_{0} t} d t=\frac{1}{T} \int_{T} x(t) e^{-j k(2 \pi / T) t} d t$,
$\frac{1}{T} \int_{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{\infty}\left|a_{k}\right|^{2}$
- Discrete time Fourier series:
$x[n]=\sum_{k=<N>} a_{k} e^{j k \omega_{0} n}=\sum_{k=<N>} a_{k} e^{j k(2 \pi / N) n}$,
$a_{k}=\frac{1}{N} \sum_{n=<N>} x[n] e^{-j k \omega_{0} n}=\frac{1}{N} \sum_{n=<N>} x[n] e^{-j k(2 \pi / N) n}$,
$\frac{1}{N} \sum_{n=\langle N\rangle}|x[n]|^{2}=\sum_{k=\langle N\rangle}\left|a_{k}\right|^{2}$

Problem 1 (Linear Systems)

a) A popular way to transmit radio signals is called Amplitude Modulation (AM). For transmitting a signal $x(t)$, the transmitter multiplies it with $\cos (\Omega t)$, where Ω is some fixed large frequency. The transmitted signal, $y(t)$, is, therefore

$$
y(t)=x(t) \cos (\Omega t)
$$

Consider the system with input $x(t)$ and output $y(t)$. For given (fixed) Ω, is the system
linear? Yes

stable? Yes
b) Is the system with input $x(t)$ and output $y(t)=x(a t+b)$
linear? Yes
time invariant? No
stable? Yes

Problem 2 (Graphical Convolution)
Graphically convolve the two signals $x[n]$ and $h[n]$ shown in Fig. 1 to evaluate the output $y[n]$ at the following points
Answer: (a) $y[3]=3$
(b) $\mathrm{y}[4]=7$
$x[n]$

Figure 1: Problem 2

Problem 3 (Frequency Response)

$y(t)$ is the output of an LTI system with frequency response $H(j \omega)$ shown below in Figure 2. When the input $x(t)=e^{\frac{j \pi t}{6}}+\sin \left(\frac{5 \pi t}{8}+\frac{\pi}{4}\right)$ is fed into the system, determine $y(0), y(10)$.
$H(j \omega)= \begin{cases}1 & \text { if } \frac{\pi}{12}<|\omega|<\frac{\pi}{2} \\ 0 & \text { otherwise }\end{cases}$

Figure 2: Problem 3
Answer $y(0)=1$
Answer $y(10)=e^{j 5 \pi / 3}$

Problem 4 (Continuous Time Fourier Series)
Plot $x(t)$ for a sequence of Fourier series coefficients $\left\{a_{k}\right\}$, given as follows:
$a_{0}=2, a_{1}=1, a_{-1}=1$, and $a_{k}=0$ for all k other than $k=-1,0,1$. Assume that the period of the signal is $T=2 \pi$.

Figure 3: Problem 2

