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1 System Properties

WEe'll be using a number of definitionsin our discussion of systems. Each of these definitions describes some property
of asystem. They do not refer to propertiesof signas; it makes no sensefor asignal to belinear, timeinvariant, causal,
memoryless, or stable.

Linearity Totdlif asystemislinear, ask the question:
If 21(t) = ya(t) and z2(t) —= y2(t), does axa(t) + fra(t) — ayi(t) + Bya(t)?
Rephrased:
If i multiply theinput by a constant, does the output get multiplied by the same constant?
If my input is the sum of a number of signals z;(¢), is the total output of the system going to be the sum of system
responses y; (¢) to each of theindividual input signals z;(t)?

The first property is called homogeneity. The second property is called additivity, or superposition. You have
already used it in solving circuits by superposition; imagine solving them without linearity and see how much hair loss
results.

Both homogeneity and additivity are necessary parts of the definition of linearity.

Exercise Show that y(t) = ﬂz_i satisfies homogeneity, but not additivity. Consequently, the system is not linear.
z(t—1)

You haveal so seenlinearity instudying differential equations, equationsof theform >0 a,y™ = S°M_ 6,207,
where z isthe input to the system, y isthe output, and the a,, and b,,, are constants. We will return to thislater on.

For examples of linear systems, consider al the circuit stuff that you have learned so far. Resistors satisfying
Ohm'slaw, capacitors satisfying i = C'v, and inductors satisfying v = Li, areall linear elements. In real lifeT™™ , just
about everything is nonlinear though. To make our lives easier, we usually linearize the system about some operating
point and then assume the system stays close to that operating point, so that our linearized models hold [such as you
did if you have studied small signal analysis of transistors].

Exercise Provethat the systems described by y(¢) = ecx(t) and y(¢) = cx(t — 2) arelinear and that the one described
by y(t) = cx?(t — 2) isnot.
Exercise Provethat for asystem to belinear, zero input must give zero output [hint: let 5 equal —«].

Timeinvariance Totell if asystemistimeinvariant, ask the question:
If z(t) = y(t), does x(t — tg) — y(t — t0)?
Note that ¢y can be positive or negative, indicating that the input can be either delayed or advanced.

Timeinvariance is a useful simplifying assumption. If a system responded to an input depending on exactly when
that input happened (as opposed to responding to the same inputsin the same manner regardless of when thoseinputs
occur), then your life would be more complicated.

For a prosaic example, consider calling me up a 11:00AM. i will speak to you nicely. If i were atime invariant
system, if you called me up a 3:30AM, i would speak to you nicely as if you called me up at 11:00AM, because i
wouldn’t care about the time. On the other hand, if i were atime varying system, if you called me up at 3:30AM, i
would use call return and flame you repeatedly. And then you would fail.

Exercises For the systems mentioned in the previous exercise for linearity, determine if they are time invariant.

Memorylessness Totell if asystem is memoryless, ask the question:
Does the output at any given time depend only on the input at that instant in time?
A strange thing is that if the output of a system depends on the input at a future point in time, the system has
memory, even though the memory is of the future.
Exercise Determinethe values of ¢o for which the system described by y(¢) = (¢t — to) ismemoryless.
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Causality Totdl if asystem iscausal, ask the question:

Does the output of the system at the current time depend only on the current and past input?

Alternatively, ask the question:

If i keep the inputsto a given system the same up to a certain point in time, do the outputs stay the same up to that
same point in time? Alternatively, ask the question:

Isthe system nonanticipatory? Does the system wait for my input to change, and then react to that change at that same
time?

All real world systems are causal if time is the independent variable. In image processing systems, we usually
employ space as the independent variable [think of a picture as lying in the zy plane, and then index the pixels of the
picturein z and y], in which case causality ismuch less of an issue, since we have thewhole pictureat agiven instance
intime.

Exercise Determinethe range of valuesfor g such that y(t) = =(t — ¢o) iscausa.
Exercise Isthesystem y(¢) = z(2t) causal? How about y(t) = x(—2t)?

Memorylessness implies causality [hint: look at the definitions above]. By contraposition, not causa implies not

memoryless. No other relationships between causality and memorylessness exist; create them at your peril.

Bounded-input bounded-output stability (BIBO stability) Totell if asystem isBIBO stable, ask the question:
If 2(¢) isbounded [|=(t)| < M < oo fordl t], isy(t) bounded?

If you are faced with determining stability, try the constant and step functions as input and then look at the outpuit.
Do not usetheimpulse as an input. It is not bounded.

Stability is dways a concern, but it is application dependent. X-ray machines should be stable, cars less so for
performance purposes. The oscillator in your watch or computer should be marginaly stable, otherwise time-keeping
would be painful without periodicity. Bombs should be unstable.

Once again, note that linearity, time invariance, causaity, memory, and BIBO stability are system properties. It
makes no sense whatsoever to use these propertiesto describe inputs, outputs, or other such signals. [Well, except for
causality; DSP guys sometimes refer to signals as being causal. They mean that the signal is zero for timet < 0.]

Inthefuture Wewill have three other methods of determining BIBO stability and one other method of determining
causality.

2 Some Examples

Examples are always useful, if nothing better than as fodder for the pattern matcher. In the following discussion, note
that the () are the system inputsand the y(¢) are the system outputs.

Consider an amplifier system A, which multipliesits input by a constant . An equation describing its function
can bewrittenas y(t) = Alz(t)] = axz(t).

o Isitlinear? If yy(t) = A[z1(?)] = az1(¢) and y2(t) = A[z2(t)] = az2(t), then
Alogza(t) + agza(t)] =  alaaza(t) + azra(t))

= aaxi(t) + agawa(t)
= aw(t) + azye(t)

Yes.
o Isittimeinvariant? If y1(¢t) = A[z1(t)] = ax1(t), then
Alza(t —t0)] = az1(t —to)
= wy(t —to)
Yes.

¢ Isit memoryless? Yes. The output a any time depends only on the current input.
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e Isitcausa? Yes. All memoryless systems are causal.

Exercise Consider an ideal wire, which can be described by the function y(t) = «(t). Isitlinear? time invariant?
causal ? memoryless?
Now let’slook at an integrator, which can be described by y(t) = I[x(t)] = [, (r)dr.

o Isitlinear? If yy(t) = I[zs(t)] = [} 2a(r)dr and ya(t) = I[wo(t)] = [} wo(7)dr, then

Haea(t) + azea(t)] = / (agea(r) + agea(r))dr

¢ ¢
al/ xl(r)dr—l—ozz/ xo(T)dT
to to
= aw(t) + azye(t)
Yes.

o Isittimeinvariant? If yy(t) = I[x1(t)] = [ x1(r)dr then

I[l‘l(t — tl)] = /t l‘l(T — tl)dT

= /t:tlxl(v)dv
# il —to)

No, since the lower limitisnot ¢g. But if o were —oo, the system would be time invariant.

o Isit memoryless? No. The output at any time depends not only on the current input but on the input previousto
the current time.

o Isitcausa? Yes. Theintegra only goestot and does not include future time.

See Table 1 below for more examples.

linear | timeinvariant | causal | memoryless | BIBO stable

y(t) =22()+1 no yes yes yes yes
y(t) = 2?(t + 1) no yes no no yes
y(t) — y(t) = =(¢), initidly at rest yes yes yes no no
y(t) + y(t) = =(¢), initidly at rest yes yes yes no yes
y(t) + y(t) = te(t), initidly et rest | yes no yes no no
y(t) = z(t) yes yes no no no
y(t) = z(t)u(t) yes no yes yes yes
y(t) = z(t) cosw,t yes no yes yes yes
y(t) = z(B)[6(t) +d(t + 2)] yes no yes yes no
y(t) = ffooo z(T)h(t — 7)dt yes yes ? ? ?

Table 1: Fun and interesting examples.

3 ZIRand ZSR

Consider thefirst order system in Figure 1 below.
Writing KCL at the v, node gives:
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Figure1: An RC circuit.
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What if the voltage across the capacitor was 4V at ¢ = 0 and the input was a step? If we went ahead, found the
homogeneous and particular solutions, and otherwise cranked through the problem the same way we aways did in
meath classes:

Vo, homogenous = C10/16_t/RC
Vo, particular = 1
Vo = Vg homogenous + Vo,particular
= 1+ Cohe—t/RC
— 1_|_ 3e—t/RC

Does thismake sense? The voltage on the capacitor is 4V initially, and decaysto 1V. OK.
But there is another way to look at the problem. Let’s first kill the input and just see what happens to the initia
condition; this should give us the zero input response (ZIR).

Vo, homogenous = C10/16_t/RC
Vo, particular = 0
Vo,ZIR = Vo homogenous + Vo,particular
— Cohe—t/RC
—  f.-t/RC

Sanity check: the 4V on the capacitor decays exponentially.
But thereisanother way to look at the problem. Now let’s zero theinitial conditions(v,(0) = 0) and just see what
happens with the step input. This should give us the zero state response (ZSR).

Vo, homogenous = C10/16_t/RC
Vo, particular = 1
Vo,ZSR = Yo homogenous + Vo,particular
= 1+ Cohe—t/RC
— ] _ -t/RC

Sanity check: the capacitor voltage rises from OV to 1V.
Now, i claim that the solution we found using the good old math method is the sum of the ZIR and the ZSR.

Vo = Wo,ZIR+ Vo, ZSR
= 143 EC

We are allowed to do this because superposition applies.

So if we use the good old math method, we find that particular solution of the math method contributesto the ZSR
only, and that the homogeneous solution shows up in both the ZIR and the ZSR. Why does part of the homogeneous
solution show up in the ZSR? Well, the output resists changing quickly because of the capacitor. In other words, we
can think of the input as exciting the dynamics of the system, as represented by the decaying exponential .

For fun For those of you who know the Laplace transform, solve the equation using that technique and try to identify
the ZIR and the ZSR.
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4 MoreontheZIR and theZSR

Let’s consider the second order system in Figure 2 bel ow.

R=5 L=1
+—W———@\—_L +
v (D) C=1/6 I v (®)

Figure2: An RLC circuit.

Writing the loop equations for this circuit gives:

vi — (oL +vo) ;

— ®r L
i, = Cu,
vr, = L'Z'L

where iz, isthe current flowing into the inductor and v;, isthe voltage across the inductor.
Solving these equations gives:

1 - R. n 1
=V = o — Vo ——= Vo
c’ T T T IC

6v; = 9,4+ 5v,+ 6v,

Zeroing the input and solving, we get the homogeneous solution:
Voh (t) = Cle_Zt + 026_3t

The particular solution depends on what v; () is. Let'suse v;(t) = cost. We then use the method of undetermined
coefficients (look at input, guess the form of the output with unknown constants in it, substitute the guess into the
origina LDE, solve for those constants) to find the particular solution.

vop(t) = Acost+ Bsint
6v; = Yo + SUop + 6U,p
3 3.
Uop(t) = gcost—|— gsmt

Fromtheinitial conditions, wecan find C; and C> inthehomogeneoussolution. Let’susev,(0) = 2andiz (0) = 3.
Sincei; = Cv,, we have v, = 18. Grinding through the algebra:

vo(t) = Cre % 4+ Cre™ + g cost + gsint
3

v,(0) = Ci1+C2+ 5

1')0(0) = -201—-3C%+ g

@6_2t — 1&1@“% + §cost + §sint
5 5 5 5
Why do we bother? Physical systems can be modeled by systems of differential equations. In techniques which
we will not study in this class (but you can ask me about them anyway), by appropriately linearizing about certain
operating points, we can reduce tons of gory nonlinear terms into simpler LDEs for which some hopefully useful
analysis can be performed.

vo(t) =
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Let'sfind the ZIR. Let's use v,(0) = 2 and v, = 18 as above. Start from the homogeneous solution, since the
particular solution isidentically zero; this correspondsto killing the input.

v,ZIR(t) = Cie™ + Coe™™

v,ZIR(0 = Ci1+C2

U, zIR(0) = —2C1+-3C,
,ZIR(H) = 24e7% 4 —22:7%

Now for the ZSR. We zero theinitial conditions, so v,(0) = 0 and v, = 0. But we still have to find the response of
the system to being driven by theinput. We have most of it aready in the sum of the particular and the homogeneous
solutions. Using the zeroed initial conditions, we get:

vo,ZSR(t) = Cre=2 4 Cre 3 4+ gCOSt—I— gsint
v,zsR(0) = Ci+Ca+ g

v,7zsr(0) = —201-3C2+ g

v,7ZSR(E) = —1—526_2t—|— ge_3t—|— gcost—i— gsint

Asacheck, we can add the ZIR and the ZSR together to get the same thing we got from cranking through the math
in the previous section.

The ZIR istheresponse of the system to theinitial conditionsonly. For thegiven set of initial conditionsv, (0) = 2
and o, = 18, the system will aways respond in the fashion v, 7|R(t) = 24¢~% 4 —22¢~%. The two decaying
exponentia s result from the dynamics of the system.

The ZSR isthe response of the system to theinput only. For the given input cost, the system will always respond
inthefashion v, 7qR(t) = —Fe™* + 2% +  cost + §sint. Notethat the two decaying exponentials; the input
excites the system dynamics, as well as showing up in the output as both a cosine and asine.

Thus, it is not useful to say that the particular solution corresponds to the ZSR exactly and that the homogeneous
solutionisthe ZIR. Parts of the homogeneous solution show up in both the ZIR and the ZSR. However, the entirety of
the particular solution does show up as part of the ZSR.

Exercise Go back through this section and the previous one. Check the algebra, see where linearity shows up, and
understand the definitions of the ZIR and the ZSR. If you do not know how to solve an LDE, read the review modules,
since thisis something you should already know.

5 A Look Ahead

Please review thevarioussystem definitions. In particular, we will need the definitionsfor linearity and timeinvariance.
With the sifting integral, we will then derive the convolution integral.

We will also have a much better way (read: simpler) of solving LDESs after we get to the Fourier and Laplace
transforms.



