

1 Convolution Recap

Some tricks:

- $x(t) * \delta(t)=x(t)$
- $x(t) * \delta\left(t-t_{0}\right)=x\left(t-t_{0}\right)$
- $x(t) * u(t)=\int_{-\infty}^{t} x(\tau) d \tau$
- $x(t) * \dot{\delta}(t)=\dot{x}(t)$

This then tells us that an integrator has impulse response $h(t)=u(t)$, and that a differentiator has impulse response $h(t)=\dot{\delta}(t)$.

Convolution is associative and commutative. Convolution also distributes over addition.

Exercise Prove it.

Convolution with $h(t)$ is both linear and time invariant.

$$
\begin{aligned}
{\left[\alpha x_{1}(t)+\beta x_{2}(t)\right] * h(t) } & =\left[\alpha x_{1}(t)\right] * h(t)+\left[\beta x_{2}(t)\right] * h(t) \\
& =\alpha\left[x_{1}(t) * h(t)\right]+\beta\left[x_{2}(t) * h(t)\right] \\
& =\alpha y_{1}(t)+\beta y_{2}(t) \\
x\left(t-t_{0}\right) * h(t) & =\left[x(t) * \delta\left(t-t_{0}\right)\right] * h(t) \\
& =[x(t) * h(t)] * \delta\left(t-t_{0}\right) \\
& =y(t) * \delta\left(t-t_{0}\right) \\
& =y\left(t-t_{0}\right)
\end{aligned}
$$

This should not surprise you. If $y(t)$ is the output of some LTI system with input $x(t)$, then $y(t)=x(t) * h(t)$.

2 More Convolution Fun

We now dig into the old ee120 archives and drag out some old problems to illustrate convolution. [Sketches of the output for each of the parts are available. Please see Figure 1.]
A. An LTI system has impulse response $h(t)=e^{-t / 2} u(t)$, input $x(t)=x_{1}(t) \sum_{n=-\infty}^{\infty} \delta(t-n)$, and output $y(t)$. If $x_{1}(t)=u(t+0.01)-u(t-3.01)$, determine the output.

First determine $x(t)$. Notice that $x(t)$ is just an impulse train multiplied by a pulse from $t=-0.01$ to $t=3.01$. This just picks out the four impulses at $t=0, t=1, t=2$, and $t=3$. Then use superposition. Convolution with shifted impulses gives four shifted copies of $h(t)$. So $y(t)=e^{-t / 2} u(t)+e^{-(t-1) / 2} u(t-1)+e^{-(t-2) / 2} u(t-2)+$ $e^{-(t-3) / 2} u(t-3)$.
B. $x(t)=e^{-2 t} u(t) . h(t)=2 \delta(t-1)+\delta(t+1)$.

Same tricks as above. $y(t)=2 e^{-2(t-1)} u(t-1)+e^{-2(t+1)} u(t+1)$.
C. $x(t)=\sum_{n=-\infty}^{\infty} \delta(t-0.01 n) . h(t)=\Pi(200 t)$.
$x(t)$ is a train of impulses, each separated from the next by $\frac{1}{100} . h(t)$ is a pulse of height 1 from $t=-\frac{1}{400}$ to $t=\frac{1}{400}$. Convolving $h(t)$ with an impulse centered at $t=t_{0}$ gives $h\left(t-t_{0}\right)$. Since there are infinitely many shifted impulses, there are infinitely many copies of $h(t)$, whose centers are separated from that of their nearest neighbors by $\frac{1}{100}$. So $y(t)=\sum_{n=-\infty}^{\infty} \Pi\left[200\left(t-\frac{n}{100}\right)\right]$.

(a) waveforms for A .

Figure 1: Sketches of the example problems. Knowing what the output looks like is definitely as good as having a mathematical formula.
D. $x(t)=e^{-t} u(t)$. $h(t)=r(t-1) \Pi\left(t-\frac{3}{2}\right)$.

Let's choose $x(t)$ to flip and shift. There are three places where the integral is different.
For $t<1$, there is no overlap, so $y(t)=0$.
For $1<t<2$,

$$
\begin{aligned}
y(t) & =\int_{1}^{t} e^{-(t-\tau)}(\tau-1) d \tau \\
& =e^{-t} \int_{1}^{t} e^{\tau}(\tau-1) d \tau \\
& =\left.e^{-t}\left(\tau e^{\tau}-2 e^{\tau}\right)\right|_{1} ^{t} \\
& =t-2+e^{1-t}
\end{aligned}
$$

For $t>2$,

$$
\begin{aligned}
y(t) & =\int_{1}^{2} e^{-(t-\tau)}(\tau-1) d \tau \\
& =e^{-t} \int_{1}^{2} e^{\tau}(\tau-1) d \tau \\
& =\left.e^{-t}\left(\tau e^{\tau}-2 e^{\tau}\right)\right|_{1} ^{2} \\
& =e^{-(t-1)}
\end{aligned}
$$

E. $\quad x(t)=\Pi(t) . h(t)=\Pi\left(\frac{t-2}{4}\right)$.

You can do flip and shift, make the pulses into sums of unit steps and convolve, or just use your intuition.

$$
y(t)= \begin{cases}0 & \text { for } t<-\frac{1}{2} \\ t+\frac{1}{2} & \text { for }-\frac{1}{2}<t<\frac{1}{2} \\ 1 & \text { for } \frac{1}{2}<t<\frac{7}{2} \\ \frac{9}{2}-t & \text { for } \frac{7}{2}<t<\frac{9}{2}\end{cases}
$$

F. $x(t)=u(t-1) . h(t)=\cos (2 \pi t) u(t)$.

Convolve $u(t)$ with $h(t)$. This gives $y(t)=\frac{1}{2 \pi} \sin (2 \pi t) u(t)$. Now, since the unit step is actually delayed by 1 , delay $y(t)$ by 1 . So $y(t)=\frac{1}{2 \pi} \sin [2 \pi(t-1)] u(t-1)$.

3 System Interconnections

There are three major ways of putting systems together. Check out Figure 2 and see if the equivalents make sense to you [two of them already should, since you saw them on ps2, problem 6]. The reason why we haven't fully talked about the feedback configuration is that the analysis becomes much easier when we hit the Fourier and Laplace transforms. Wait 1.5 months.

Figure 2: The three major ways we have of composing systems.

4 Eigenfunctions

Consider an LTI system with input $x(t)$, impulse response $h(t)$, and output $y(t)$. What function can we put into the system so that we will get the same function out, scaled by a constant? Such functions are called eigenfunctions and their associated constants are called eigenvalues. In symbols, for a system performing operation H on its input, we have $H[f(\cdot)]=\lambda f(\cdot)$, where $f(\cdot)$ is the eigenfunction and λ is its eigenvalue. ${ }^{1}$

Let's try $x(t)=e^{j \omega t}$. Then

$$
y(t)=x(t) * h(t)
$$

[^0]\[

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \\
& =\int_{-\infty}^{\infty} x(t-\tau) h(\tau) d \tau \\
& =\int_{-\infty}^{\infty} e^{j \omega(t-\tau)} h(\tau) d \tau \\
& =e^{j \omega t} \int_{-\infty}^{\infty} e^{-j \omega \tau} h(\tau) d \tau \\
& =e^{j \omega t} H(\omega)
\end{aligned}
$$
\]

where $H(\omega)$ is defined as $\int_{-\infty}^{\infty} e^{-j \omega \tau} h(\tau) d \tau$.
Note that $H(\omega)$ could be complex. That means that we can also write:

$$
y(t)=|H(\omega)| e^{j(\omega t+\angle H(\omega))}
$$

What if we tried a cosine? If we assume that the system performs operation H on its input:

$$
\begin{aligned}
y(t) & =H[x(t)] \\
& =H[\cos (\omega t)] \\
& =H\left[\frac{1}{2}\left(e^{j \omega t}+e^{-j \omega t}\right)\right] \\
& =\frac{1}{2} H\left[e^{j \omega t}\right]+\frac{1}{2} H\left[e^{-j \omega t}\right] \\
& =\frac{1}{2}|H(\omega)| e^{j \omega t+j \angle H(\omega)}+\frac{1}{2}|H(-\omega)| e^{-j \omega t+j \angle H(-\omega)} \\
& \neq \lambda \cos (\omega t)
\end{aligned}
$$

Oh well. Because there is no guarantee that $|H(\omega)|$ is even and $\angle(H(\omega))$ is odd, we have to delete cosine from the list of candidates. Similar reasoning allows us to delete sine.
Exercise Prove that $\sin (\omega t)$ is not an eigenfunction.
Anyway, we still have an important result. If you gave me a system with impulse response $h(t)$ and input $x(t)$ and told me to find $y(t)$, i could always convolve and give you an answer. But since $e^{j \omega t}$ is an eigenfunction for the convolution operator, if i can

1. represent the input $x(t)$ as the sum of complex exponentials
2. determine $H(\omega)$ for the impulse response $h(t)$
then i can give you the output $y(t)$ as the sum of complex exponentials, scaled by H at the appropriate values of ω. That is, if

$$
x(t)=\sum_{n=-\infty}^{\infty} X_{n} e^{j n \omega_{0} t}
$$

then

$$
\begin{aligned}
y(t) & =\sum_{n=-\infty}^{\infty} X_{n} H\left(n \omega_{0}\right) e^{j n \omega_{0} t} \\
& =\sum_{n=-\infty}^{\infty} X_{n}\left|H\left(n \omega_{0}\right)\right| e^{j\left(n \omega_{0} t+\angle H\left(n \omega_{0}\right)\right)}
\end{aligned}
$$

Notice that i didn't have to do any convolution. What a feature.

5 Sinusoidal Steady-State Response of Real-World LTI Systems

If $h(t)$ is real, then we can definitely say some useful things about cosine and sine being inputs into LTI systems. If $h(t)$ is real, then $h(t)=h^{*}(t)$. So

$$
\begin{aligned}
H^{*}(\omega) & =\left[\int_{-\infty}^{\infty} h(t) e^{-j \omega t} d t\right]^{*} \\
& =\int_{-\infty}^{\infty} h^{*}(t) e^{j \omega t} d t \\
& =\int_{-\infty}^{\infty} h(t) e^{-j(-\omega) t} d t \\
& =H(-\omega)
\end{aligned}
$$

Rewriting $H^{*}(\omega)$ and $H(-\omega)$ in polar form gives:

$$
\begin{aligned}
H^{*}(\omega) & =\left[|H(\omega)| e^{j \angle H(\omega)}\right]^{*} \\
& =|H(\omega)| e^{-j \angle H(\omega)} \\
H(-\omega) & =|H(-\omega)| e^{j \angle H(-\omega)}
\end{aligned}
$$

If we equate the two polar forms,

$$
\begin{aligned}
|H(-\omega)| & =|H(\omega)| \\
\angle H(-\omega) & =-\angle H(\omega)
\end{aligned}
$$

In other words, for a real $h(t)$ the magnitude of the frequency response is even and the phase of the frequency response is odd.

Let's now go back to trying a cosine as an input into an LTI system.

$$
\begin{aligned}
y(t) & =H[\cos (\omega t)] \\
& =\frac{1}{2}|H(\omega)| e^{j \omega t+j \angle H(\omega)}+\frac{1}{2}|H(-\omega)| e^{-j \omega t+j \angle H(-\omega)} \\
& =\frac{1}{2}|H(\omega)| e^{j \omega t+j \angle H(\omega)}+\frac{1}{2}|H(\omega)| e^{-j \omega t-j \angle H(\omega)} \\
& =|H(\omega)| \cos [\omega t+\angle H(\omega)]
\end{aligned}
$$

So if our impulse response is real, then a cosine as input comes back out still looking like a cosine, but its amplitude is scaled by the magnitude of the frequency response, and its phase is shifted by the phase of the frequency response. But all real-world systems are real, so this should work on any system i care to take down to the lab and throw cosines into. In fact, this gives me a good way to figure out what $H(\omega)$ is; i can generate all sorts of cosines with amplitude 1 at various frequencies and record the output cosines' amplitude and phase shift to construct $H(\omega)$. This procedure is actually used in the real world.
Exercise Prove that if $h(t)$ is real, then sine as input gives a sine as output.

6 A Look Ahead

Fourier series you have already seen in differential equations. We're going to use it as a stepping stone into the Fourier transform. After developing the FT, we'll find out that we have a shortcut to convolution. This will be exceedingly cool.

[^0]: ${ }^{1}$ Eigen is German for self, i think. Well, on good days, that is.

