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Notes 07 largely plagiarized by %khc

1 Warning

This set of notes covers the Fourier transform. However, i probably won’t talk about everything here in section; instead
i will highlight important properties or give random examples.1 You are advised to consult your lecture notes, this set
of notes, and your textbook, since you are responsible for everything.

2 Fourier Transform

We have already seen the Fourier transform; an input x(t) = ej!t into an LTI system with impulse response h(t) gives
an output y(t):

y(t) = x(t) � h(t)

=

Z 1

�1

x(� )h(t� � )d�

=

Z 1

�1

x(t� � )h(� )d�

=

Z 1

�1

ej!(t��)h(� )d�

= ej!t
Z 1

�1

e�j!�h(� )d�

= ej!tH(!)

where H(!) is defined as
R1
�1 e�j!�h(� )d� . H(!) is the Fourier transform of h(t).

So what? How can we interpret the Fourier transform, other than as more annoying math that we have to remember?
Before, we noted that the Fourier series decomposes a periodic signal into discrete frequencies, each a multiple of

some basic frequency. Now, we have the Fourier transform, which can decompose an aperiodic signal also into its
component frequencies; however, these frequencies are not multiples of some frequency, but range from ! = �1 to
! =1.

To see this, we can start from the formula for FS coefficients, and then take the limit as T !1 (thereby increasing
the period until we effectively have only one period to consider):

X(!)
∆
= lim

T!1
Tak

= lim
T!1

Z T=2

�T=2
x(t)e�jk!0tdt

=

Z 1

�1

x(t)e�j!tdt

Note that we have !
∆
= k!0. As T !1, !0 = 2�

T becomes infinitesimally small, but we can always find some k such
that ! = k!0 for the ! in which we are interested.

3 FT Properties

Linearity The Fourier transform is a linear operation. This means that if x(t)$ X(!) and y(t)$ Y (!) then

� ax(t)$ aX(!).

1Randomness is good.
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� x(t) + y(t)$ X(!) + Y (!).

Utility value: very high.

Conjugate symmetry If x(t) is real, X(w) = X�(�w).
As with FS:

X�(�!) =

Z 1

�1

x�(t)e+j(�!)tdt

=

Z 1

�1

x(t)e�j!tdt

= X(!)

This also implies that Re (X(!)) and jX(!)j are even functions, and Im (X(!)) and 6 (X(!)) are odd functions.
Utility value: checking work.

Even and odd symmetry If x(t) is real and even, X(!) is real and even.
If x(t) is real and odd, X(!) is imaginary and odd.
Utility value: checking work.

Scale change x(at)$ 1
jajX(!a )

Contraction in time (a < 0) causes expansion in frequency. Expansion in time (a > 0) causes contraction in frequency.
Think Heisenberg.
Utility value: testing situation.

Time shift x(t� T )$ X(!)e�j!T

A delay or advance does not change the magnitude of the Fourier transform, but the phase changes by �!T . If
6 (X(!)) is linear with !, this is termed “linear phase”, a phrase is used when referring to filters. If you are interesting
in passing a certain band of frequencies without modifying them too much, you would like to have linear phase in that
band, because linear phase corresponds to an advance or delay in time. Nonlinear phase would tend to phase shift
some frequencies more than others, causing very interesting output.
Utility value: very high.

Modulation ejΩtx(t)$ X(! �Ω)
Shifting in frequency is modulation by a complex exponential in time. Why would we want to shift in frequency?
Well, if everybody used -20 kHz to 20 kHz for communication, nothing much would get done. So if we assign bands
of frequencies to everybody who wants to communicate, and modulated our signals with complex exponentials at
frequency Ω, we would end up centering our original -20 kHz to 20 kHz around Ω. If we allocating frequencies
correctly so that there were sufficient guard bands between consecutive blocks of frequency, we could all just get along.

ω

you me them

guard
band

guard
band

... ...

Figure 1: Guard bands.

In this country, frequency allocation is done by the Federal Communications Commission (FCC)2.
Utility value: very high.

2i had a brief run-in with them a couple of years ago, but that’s another story [available during office hours, if desired].
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Convolution in time is multiplication in frequency. x(t) � y(t)$ X(!)Y (!)
This gives us another way to do those annoying convolution integrals. Of course, don’t get carried away and transform
everything to avoid convolution— it may actually be a lot easier at some points in time to stay in the time domain (eg
convolution in time with a series of impulses).
Utility value: very high.

Multiplication in time is convolution in frequency except for a factor of 1
2� . x(t)y(t) $ 1

2�X(!) � Y (!)

Try not to forget the 1
2� , the source of many lost points.3 Convince yourself that modulation is a special case of this.

Utility value: very high.

Duality If g(t)$ f(!) then f(t)$ 2�g(�!).
Note the negative sign and the factor of 2�, another source of lost points.
Utility value: very high, especially for deriving transforms not in the table.

Integration
R t
1 x(� )d� $ 1

j!X(!) + �X(0)�(!)
The delta function accounts for the DC in x(t).
Utility value: testing situation.

Differentiation d
dtx$ j!X(!)

This gives us another way to solve LDEs. see below.
Utility value: very high.
Exercise Prove these properties.
Exercise Compare these properties to those of the Fourier series. Hmmm, some of them look pretty much the same,
except that k!0 gets replaced by !...

4 Fourier Transform Symmetry Properties

If x(t)$ X(!), what happens to x(�t), x�(t), and x�(�t)?

F [x(�t)] =

Z 1

�1

x(�t)e�j!tdt

= �

Z �1

1

x(� )ej!td�

=

Z 1

�1

x(� )e�j(�!)td�

= X(�!)

F [x�(t)] =

Z 1

�1

x�(t)e�j!tdt

= [

Z 1

�1

x(t)ej!tdt]�

= [

Z 1

�1

x(t)e�j(�!)tdt]�

= X�(�!)

F [x�(�t)] =

Z 1

�1

x�(�t)e�j!tdt

= �

Z �1

1

x�(� )ej!td�

3If you do leave it out, you’ve just created free energy [see Parseval’s identity for energy signals].
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= [

Z 1

�1

x(� )e�j!td� ]�

= X�(!)

We also need to extend the notion of evenness and oddness to complex-valued functions:

CS [x(t)] =
1
2
[x(t) + x�(�t)]

CAS [x(t)] =
1
2
[x(t)� x�(�t)]

Given the above and some knowledge of x(t), we can actually say some useful things about X(!).

Re [x(t)] =
1
2
[x(t) + x�(t)]

$
1
2
[X(!) +X�(�!)]

$ CS [X(!)]

CS [x(t)] =
1
2
[x(t) + x�(�t)]

$
1
2
[X(!) +X�(!)]

$ Re [X(!)]

Exercise Prove Im [x(t)] = 1
2 [x(t)� x�(t)]$ CAS [X(!)] = 1

2 [x(t)� x�(�t)] and CAS [x(t)]$ Im [X(!)].
Exercise Compare to the Fourier series symmetry properties. Notice something.

5 Fun FT facts

The DC level of a signal in the frequency domain is X(0).

X(0) =
Z 1

�1

x(t)dt

The value x(0) can be recovered by integrating over the corresponding Fourier transform.

x(0) =
1

2�

Z 1

�1

X(!)d!

The area under sin ax
bx is the area of the inscribed triangle under the main lobe of the function. This area is �

b .

The Fourier transform of a gaussian, a function of the form e�
(x�a)2

b , is a gaussian (of the same form).
The Fourier transform of an impulse train is an impulse train.
The Fourier transform of 0 is 0.

6 Useful FTs

Delta function �(t):

X(!) =

Z 1

�1

�(t)e�j!tdt

=

Z 1

�1

�(t)dt

= 1
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Constant 1: �(t)$ 1, so 1 $ 2��(!) by duality.

Signum function sgn (t): The signum function is defined as:

sgn (t) =

�
+1 if t > 0
�1 if t < 0

Note the behavior at t = 0.

X(!) =

Z 1

�1

sgn (t)e�j!tdt

= lim
�!0

Z 1

�1

e��jtjsgn (t)e�j!tdt

= lim
�!0

[�

Z 0

�1

e�t�j!tdt+

Z 1

0
e��t�j!tdt]

= lim
�!0

[�
1

�� j!
e��j!)tj0�1 �

1
�+ j!

e�(�+j!)tj10 ]

= lim
�!0

[�
1

�� j!
+

1
�+ j!

]

= lim
�!0

�
2j!

�2 + !2

= �
2j!
!2

=
2
j!

Unit step u(t):

X(!) = F(u(t))

= F(
1
2
+

1
2

sgn (t))

= ��(!) +
1
j!

Doublet �̇(t): �(t)$ 1, so �̇(t)$ j! by differentiation property.

Complex exponential ejΩt: 1 $ 2��(!) so ejΩt $ 2��(! � Ω) by modulation. This can also be done using
duality on the time shift property.

Sine sin Ωt:

X(!) = F(sin Ωt)

= F(
1
2j

[ejΩt � e�jΩt])

= �j�[�(! �Ω) � �(! + Ω)]

Since sine is real and odd, its Fourier transform is purely imaginary.
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Cosine cos Ωt:

X(!) = F(cos Ωt)

= F(
1
2
[ejΩt + e�jΩt])

= �[�(! �Ω) + �(! + Ω)]

Since cosine is real and even, its Fourier transform is purely real.

Pulse Π(t): If a pulse is defined as:

x(t) =

�
1 if�T1 < t < T1

0 elsewhere

then its transform is:

X(!) =

Z T1

�T1

e�j!tdt

= �
1
j!

e�j!tjT1
�T1

= �
1
j!

[e�j!T1 � e+j!T1 ]

=
2 sin!T1

!

Exponential e�atu(t):

X(!) =

Z 1

0
e�at�j!tdt

= �
1

j! + a
e�(j!+a)tj10

=
1

j! + a

assuming Re a > 0.

Any Fourier series

X(!) = F(
1X

k=�1

ake
jk!0t)

=
1X

k=�1

akF(ejk!0t)

= 2�
1X

k=�1

ak�(! � k!0)

7 Fourier Transform Interpretation

Now that we have seen the Fourier transform, how exactly can we interpret what it’s doing? Well, one way is to say
that the Fourier transform of x(t) gives the “frequency content” of x(t).

Consider the complex exponential ej!0t $ 2��(! � !0). F [ej!0t] contains only one frequency at ! = !0.
Consider the constant 1 $ 2��(!). F [1] contains only one frequency at ! = 0, corresponding to DC.
Consider the cosine cos!0t $ ��(! + !0) + ��(! � !0). F [cos!0t] contains two frequencies, one at �!0 and

the other at !0. i will now blithely dodge the concept of explaining negative frequency, except to say that negative
frequencies can be thought of as a mathematical construct in order to understand sines and cosines.
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8 Time Limited and Band Limited Signals

If x(t) is time limited, then X(!) has infinite bandwidth. To see this, consider a signal x0(t)Π( t
a
), limited in time

to duration a. x0(t) is multiplied by a pulse in time, so in frequency X0(!) is convolved with a sinc. Generally,
convolution of “well-behaved” signals (eg nothing with doublets or other derivatives of �) with a signal of infinite
extent is going to give you something of infinite extent. So we in the frequency domain, X(!) will not go to zero for
all ! greater than some !0. Thus, our signal is not bandlimited.
Exercise Show that if X(!) is bandlimited, then x(t) is not of finite duration.

9 A Consistency Check

We should be able to use the integration and differentiation properties of the Fourier transform to prove that:

� the derivative of �(t) is the doublet.

� the integral of the doublet is �(t).

� the integral of �(t) is u(t).

� the derivative of u(t) is �(t).

To prove these statements, first tranform the function into the frequency domain, apply the appropriate FT property,
and tranform back into the time domain.
Exercises Prove these.

10 Solving LDEs

The general form of a linear differential equation is:

NX
n=0

an
dn

dtn
y =

MX
m=0

bm
dm

dtm
x

This would be a flaming pain to solve for large M and N . Fortunately, we have the Fourier transform differentiation
property. Through repeated application of this property, we obtain dn

dtn y $ (j!)nY (!). So, assuming that the system
is at rest (zero state, or zero initial conditions), we then have:

NX
n=0

an(j!)
nY (!) =

MX
m=0

bm(j!)mX(!)

We have reduced a differential equation to an algebraic one. This is a feature.
In fact, we can solve this equation for Y (!)

X(!)
:

Y (!)

X(!)
=

PM
m=0 bm(j!)mPN
n=0 an(j!)

n

If x(t) is the input to an LTI system and h(t) is its impulse response, then its output is y(t) = x(t) � h(t). If
X(!) = F(x(t)), H(!) = F(h(t)), and Y (!) = F(y(t)), then using the fact that convolution in the time domain is
multiplication in the frequency domain Y (!) = X(!)H(!).

What does this have to do with the math at the beginning of the section? We know Y (!) = X(!)H(!), or
H(!) = Y (!)

X(!) . This then gives us:

H(!) =

PM
m=0 bm(j!)mPN
n=0 an(j!)

n
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Compare this to your results from problem set 4, problem 9, and realize that you found another way to say the same
thing.

So, if you give me an LDE describing the operation of some LTI system, i can give you itsH(!) and corresponding
impulse response h(t). In fact, for x(t) = �(t), X(!) = 1, so Y (!) = H(!).

Once we have H(!), we can then determine Y (!) for any X(!). So if you give me any input x(t), i can determine
its Fourier transformX(!), find Y (!), and then inverse Fourier transform to get y(t). No convolution! What a feature!

11 Inverse Fourier Transform

Inverse FTs are extremely painful to do, since they require some familiarity with complex analysis. Instead, we will
use the time-honored method of table lookup. This is why familiarity with the transforms listed above in the “Useful
FTs” section is useful.

Of course, it would be too much to expect every function we deal with to be easily found in a table. If certain
conditions are met, we can use partial fraction expansion to reduce the function into simpler ones which we hopefully
can find in our tables for inverse transforming.

12 Partial Fraction Expansion

The Heaviside method is a short-cut for determining the partial fraction expansion of a rational function of the form
f(x)
g(x) , where the degree of f(x) is less than the degree of g(x) and g(x) can be factored into linear terms (no powers
of x greater than 1). Assume that g(x) can be written as (x � r1)(x � r2) � � � (x � rN ) where the roots of g(x) are
distinct. Then:

f(x)

g(x)
=

f(x)

(x� r1)(x� r2) � � � (x� rN )

=
A1

x� r1
+

A2

x� r2
+ � � �+

AN

x� rN

where we have blithely assumed that we could do the partial fraction expansion (not exactly mathematically robust,
but so is life).

To find a formula for A1:

f(x)

(x� r1)(x� r2) � � � (x� rN )
=

A1

x� r1
+

A2

x� r2
+ � � �+

AN

x� rN

f(x)

(x� r2) � � � (x� rN )
= A1 +

A2(x� r1)

x� r2
+ � � �+

AN (x� r1)

x� rN

f(x)

(x� r2) � � � (x � rN )
jx=r1 = [A1 +

A2(x� r1)

x� r2
+ � � �+

AN (x� r1)

x� rN
]jx=r1

f(x)

(x� r2) � � � (x � rN )
jx=r1 = A1

Formulas for the other A are found similarly.
An example:

1
(x+ 5)(x� 6)

=
A1

x+ 5
+

A2

x� 6

A1 = (x+ 5)
1

(x+ 5)(x� 6)
jx=�5 = �

1
11

A2 = (x� 6)
1

(x+ 5)(x� 6)
jx=6 =

1
11

1
(x+ 5)(x� 6)

=
�1=11
x+ 5

+
1=11
x� 6
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What if the roots of g(x) are not distinct? We can then use a differentiation trick. Example:

5x+ 2
(x� 1)2 =

A1

x� 1
+

A2

(x� 1)2

5x+ 2 = A1(x� 1) +A2

5x = A1x) A1 = 5 differentiating once wrt x

(5x+ 2)jx=1 = [A1(x � 1) + A2]jx=1 ) A2 = 7
5x+ 2
(x� 1)2 =

5
x� 1

+
7

(x� 1)2

13 Putting It All Together

Suppose we have a system described by the linear differential equation

y00 � y0 � 30y = x

So by the above reasoning, its impulse response h(t) is:

(j!)2Y (!)� (j!)Y (!) � 30Y (!) = X(!)

Y (!)

X(!)
=

1
(j! + 5)(j! � 6)

H(!) =
1

(j! + 5)(j! � 6)

h(t) = F [
�1=11
j! + 5

+
1=11
j! � 6

]

= �
1

11
e�5tu(t) +

1
11
e6tu(t)

Note that the system is not BIBO stable.
Exercise Why?

14 A Look Around

We have covered quite a bit of Fourier transform material. You should be familiar with all of it. Since i have finite
time in section, i’m going to have to depend on your not-as-finite time in order to review all this. Please do so.


