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1 Warning

Thisset of notescovers the Fourier transform. However, i probably won't talk about everything herein section; instead
i will highlight important properties or give random examples.! You are advised to consult your lecture notes, this set
of notes, and your textbook, since you are responsiblefor everything.

2 Fourier Transform

We have already seen the Fourier transform; aninput z(¢) = /“* into an LTI system with impulseresponse h(t) gives
an output y(¢):

y(t) = w(t) = h(t)
= /_ z(T)h(t — T)dT
= /_00 z(t — T)h(r)dr

where H (w) isdefined as = e~/ h(r)dr. H (w) isthe Fourier transform of A(t).

Sowhat? How can weinterpret the Fourier transform, other than as more annoying math that we have to remember?

Before, we noted that the Fourier series decomposes a periodic signa into discrete frequencies, each a multiple of
some basic frequency. Now, we have the Fourier transform, which can decompose an aperiodic signal aso into its
component frequencies, however, these frequencies are not multiples of some frequency, but range fromw = —cc to
W = OO,

To seethis, we can start from theformulafor FS coefficients, and then takethelimitas7” — oo (thereby increasing
the period until we effectively have only one period to consider):

X(w) 2 im Tay,

T—oo

T/2 '
= lim / x(t)e_kaotdt
T—oo —T/2

= / x(t)e_jwtdt

Notethat we have w 2 kwo. AST — 00, wo = ZT—” becomes infinitesimally small, but we can always find some & such
that w = kwq for thew inwhich we are interested.
3 FT Properties

Linearity TheFourier transformisalinear operation. Thismeansthat if z(t) < X (w) and y(t) + Y (w) then

o az(t) & aX(w).

1Randomnessis good.
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)+ ylt) & X(w) + Y (w).
Utility value: very high.

Conjugatesymmetry If z(¢) isred, X (w) = X*(—w).
Aswith FS:

X (~w) = / e (et gy

= /_O:ox(t)e_jwtdt
= X(w)

Thisalso impliesthat Re (X (w)) and | X (w)| are even functions, and Zm (X (w)) and £(X (w)) are odd functions.
Utility value: checking work.

Even and odd symmetry If z(¢) isrea and even, X (w) isreal and even.
If z(¢) isred and odd, X (w) isimaginary and odd.
Utility value: checking work.

Scalechange «(at)

Contractionintime (a < d) caus& expansionin frequency. Expansionintime (e > 0) causes contractionin frequency.
Think Heisenberg.

Utility value: testing situation.

Timeshift z(t —T) & X(w)e w7

A delay or advance does not change the magnitude of the Fourier transform, but the phase changes by —wT'. If
(X (w)) islinear withw, thisistermed “linear phase”, aphraseis used when referring tofilters. If you areinteresting
in passing a certain band of frequencies without modifying them too much, you would like to have linear phase in that
band, because linear phase corresponds to an advance or delay in time. Nonlinear phase would tend to phase shift
some frequencies more than others, causing very interesting output.

Utility value: very high.

Modulation e/%z(t) +» X(w — Q)

Shifting in frequency is modulation by a complex exponentia in time. Why would we want to shift in frequency?
WEell, if everybody used -20 kHz to 20 kHz for communication, nothing much would get done. So if we assign bands
of frequencies to everybody who wants to communicate, and modulated our signals with complex exponentias at
frequency Q, we would end up centering our origina -20 kHz to 20 kHz around Q. If we allocating frequencies
correctly so that there were sufficient guard bands between consecutive bl ocks of frequency, we could al just get a ong.

them

/\/\/\

guard guard
band band

Figure 1. Guard bands.

In this country, frequency allocation is done by the Federal Communications Commission (FCC)?.
Utility value: very high.

2j had a brief run-in with them a couple of years ago, but that’s another story [available during office hours, if desired].
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Convolutionin timeismultiplicationin frequency. x(t) * y(t) <> X (w)Y (w)

This gives us another way to do those annoying convolutionintegrals. Of course, don’t get carried away and transform
everything to avoid convolution— it may actually be alot easier at some pointsin timeto stay in the time domain (eg
convolutionin time with a series of impul ses).

Utility value: very high.

Multiplication in timeis convolution in frequency except for afactor of -. xz(t)y(t) + £ X(w) x Y (w)
Try not to forget the % the source of many lost points.® Convince yourself that modulation is aspecial case of this.
Utility value: very high.

Duality If g(t) & f(w) then f(t) & 2rg(—w).
Note the negative sign and the factor of 27, another source of lost points.
Utility value: very high, especially for deriving transforms not in the table.

Integration [, z(r)dr + £ X (w) + 71X (0)d(w)
The deltafunction accounts for the DC in x(t).
Utility value: testing situation.

Differentiation 4z < jwX (w)

This gives us another way to solve LDES. see below.

Utility value: very high.

Exercise Provethese properties.

Exercise Compare these propertiesto those of the Fourier series. Hmmm, some of them look pretty much the same,
except that kwo gets replaced by w...

4 Fourier Transform Symmetry Properties

If (t) & X(w), what happensto z(—t), z*(¢), and z*(—t)?
Fle(-t)] = /_00 x(—t)e v dt
= —/Oo_oo z(r)eltdr

= —/ x*(r)ejmdr

3If you do leaveit out, you'vejust created free energy [see Parseval’s identity for energy signals].
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= [/_O:ox(r)e_jwtdr]*
= X(w)

We a'so need to extend the notion of evenness and oddness to complex-val ued functions:

es ()] = Hle(t) + (1)
CAS [#(t)] = Sfelt) " (~1)]

Given the above and some knowledge of z(¢), we can actually say some useful things about X (w).

Re o] = Slelt) +2"(0)]

2IX (@) + X ()]
e8 [X ()]
1

CSle(®)] = 3let) +27(=1)]

& IX() + X" W)

& Re[X(w)]

Exercise ProveZm [z(t)] = [x(t) — 27(1)] > CAS [X(w)] = L[z(t) — 2*(—t)] and CAS [z(1)] > Im [X (w)].
Exercise Compareto the Fourier series symmetry properties. Notice something.

5 Fun FT facts

The DC level of asigna inthe frequency domainis X (0).

The value z(0) can be recovered by integrating over the corresponding Fourier transform.

z(0) = %/_00 X (w)dw

The area under 3'2% isthe area of theinscribed triangle under the main lobe of the function. Thisareais 7.

T—a 2
The Fourier transform of a gaussian, afunction of theform e~ fesek , isagaussian (of the same form).
The Fourier transform of animpulsetrain isanimpulsetrain.
The Fourier transform of 0isO0.

6 Useful FTs

Delta function 4 (¢):
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Constant 1:  4(¢) ¢ 1,501 +» 2md(w) by duality.

Signum function sgn (¢):  The signum function is defined as:

[ +1 ift>0
39”(”—{_1 ift <0

Note the behavior at ¢t = 0.

X(w) = / sgn (t)e—jwtdt
— im [ e ot
= l%/_ooe sgn (t)e™ 7w dt
0 ) 00 '
= ||m[_/ eﬁt_]wtdt—i—/ e—et—]wtdt]
e—=0 00 0
= lim —ieﬁ_jw)qo _ 1 e—(€+jw)t|oo]
=0 € — jw T e+ jw 0
1 1
= lim[—
El—r;r(])[ g_jw+€+jw]
. 2jw
- ll—[;r(])_€2—|—w2
_ 2jw
= 2
2
= 7o
Unit step u(t):
Xw) = F(ud))
1
= Flz+ zsgn (¢
G+ 2sn ()
1
= ) -
mo()+ 2

Doublet §(t):  d(t) ++ 1,504(t) « jw by differentiation property.

Complex exponential e/¥: 1 « 2rd(w) S0 /¥ « 2rd(w — Q) by modulation. This can aso be done using
duality on the time shift property.

SinesnQt:

X(w) = F(snQt)
= Pl - )
= —ialbl - Q) - 3 +)]

Since sineisrea and odd, itsFourier transform is purely imaginary.
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Cosine cos Qt:
X(w) = F(cosQt)
= FGE 4 )
= m0(w—Q)+d(w+ Q)]

Since cosineisreal and even, itsFourier transformis purely red.

PulseM(t): If apulseisdefined as:
(1) = 1 if-T1<t<Ty
=1 0 dsawhere
then itstransformis:

T
X(w) = / eIVt L
-7
1 .
— _j_we ]wt|_1T1
1 ol _ tjor
= _j_w[e - ¢ ]
ZSian]_
w

Exponential e~ * u(t):

X(w) = /0 e~ M—Ivt gy
1

- _ —(jwta)t|co
jw + ae o
_ 1
 ju+ta
assuming Re a > 0.
Any Fourier series
X(w) = F( Z akejkwot)
k=—oc
= 3 wF(re)
k=—oc
= 2r Z apd(w — kwo)
k=—oc

7 Fourier Transform Interpretation

Now that we have seen the Fourier transform, how exactly can we interpret what it's doing? Well, one way is to say
that the Fourier transform of #(t) givesthe“frequency content” of =(t).

Consider the complex exponential e/“°! ¢+ 2m§(w — wp). F[e/*0!] contains only one frequency a w = wo.

Consider the constant 1 + 2ré(w). F[1] containsonly one frequency at w = 0, corresponding to DC.

Consider the cosine coswot ¢ md(w + wo) + 7d(w — wo). Flcoswet] contains two frequencies, one at —wo and
the other at wo. i will now blithely dodge the concept of explaining negative frequency, except to say that negative
frequencies can be thought of as a mathematical construct in order to understand sines and cosines.
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8 TimeLimited and Band Limited Signals

If z(¢) istime limited, then X (w) has infinite bandwidth. To see this, consider asignal zo(¢)M(%), limited in time
to duration a. xo(t) is multiplied by a pulse in time, so in frequency Xo(w) is convolved with asinc. Generdly,
convolution of “well-behaved” signals (eg nothing with doublets or other derivatives of ¢) with a signa of infinite
extent is going to give you something of infinite extent. So we in the frequency domain, X (w) will not go to zero for
all w greater than some wg. Thus, our signal is not bandlimited.

Exercise Show that if X (w) isbandlimited, then x(¢) is not of finite duration.

9 A Consistency Check

We should be able to use the integration and differentiation properties of the Fourier transform to prove that:

the derivative of §(¢) isthe doublet.

theintegral of the doubletisd(t).

theintegral of §(t) isu(t).

the derivative of u(t) isé(t).

To provethese statements, first tranform the functioninto the frequency domain, apply the appropriate FT property,
and tranform back into the time domain.
Exercises Provethese.

10 Solving LDEs

The general form of alinear differential equationis:

N g M gm
;andt—ny = mZ::Obmdt—mx

Thiswould be aflaming pain to solve for large A/ and N. Fortunately, we have the Fourier transform differentiation
property. Through repeated application of this property, we obtain jt—iy & (jw)"Y (w). So, assuming that the system
iséat rest (zero state, or zero initial conditions), we then have:

We have reduced a differentia equation to an algebraic one. Thisisafeature.
In fact, we can solve this equation for )};E:‘j; :
V(@) _ Ymegbm(iw)”
X)) S lgan(jw)

If z(¢) isthe input to an LTI system and A(t) is its impulse response, then its output is y(¢) = z(t) * A(t). If
X(w) = F(z(t), Hw) = F(h(?)),and Y (w) = F(y(t)), then using the fact that convolution in thetime domainis
multiplicationin the frequency domain Y (w) = X (w)H (w).

What does this have to do with the math at the beginning of the section? We know Y (w) = X (w)H (w), or

H(w) = §Eg; Thisthen givesus:

Yo bm ()™

Hw) =
) > on— n (jw)"
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Compare this to your results from problem set 4, problem 9, and realize that you found another way to say the same
thing.

So, if you give me an L DE describing the operation of some LTI system, i can giveyouits  (w) and corresponding
impulseresponse (t). Infact, for z(t) = §(t), X(w) =1, 90Y (w) = H(w).

Oncewehave H (w), we can then determine Y (w) forany X (w). Soif you givemeany input z(t), i can determine
itsFourier transform X (w), find Y (w), and theninverse Fourier transformto get y(¢). No convolution! What afesture!

11 InverseFourier Transform

Inverse FTs are extremely painful to do, since they require some familiarity with complex anaysis. Instead, we will
use the time-honored method of table lookup. Thisiswhy familiarity with the transforms listed above in the “ Useful
FTS section isuseful.

Of course, it would be too much to expect every function we deal with to be easily found in atable. If certain
conditionsare met, we can use partial fraction expansion to reduce the function into simpler ones which we hopefully
can find in our tables for inverse transforming.

12 Partial Fraction Expansion

The Heaviside method is a short-cut for determining the partia fraction expansion of arational function of the form
fql(f)l, where the degree of f(z) isless than the degree of ¢(«) and ¢(x) can be factored into linear terms (no powers

of x greater than 1). Assume that g(x) can be written as (¢ — r1)(xz — r2) - - - (¥ — rn) Where the roots of g(z) are
distinct. Then:

fl@) f(2)
9(x) (x—r)(w=r2) (& —1n)
Aq Ay Apn
S rmtront T

where we have blithely assumed that we could do the partia fraction expansion (not exactly mathematically robust,

but soislife).
Tofind aformulafor Ay:
f(=) A A AN
(x —r)(@—r2) - (z —rn) B 1‘—7”1—1—90—7“2—1_.”—1—1‘—7“1\7
f(x) N Az(x —r1) o An(z —m)
@—r2)(x—ry) 1 z-r x—ry

f(x) B Az(x —r1) An(z — 1)

($ — 702) T (l‘ — rN) |x:7‘1 = [Al + 71‘ . e —x _— ]|x_r1
f(=z _

($ — 702) T (l‘ — rN) |x:7‘1 = Al

Formulas for the other A are found similarly.

An example:
1 _ A4
(x+5)(x—-6)  r+5 r—6
1 1
A= (“5)(x+5)(x—6)|“—5—_ﬁ
1 1
Ap = (2—6)————fomg =
2 ) TP LT
1 -1 11

(t +5)(zx—6)  x+5 x-6
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What if the roots of ¢(«) are not distinct? We can then use a differentiationtrick. Example:

5z 4 2 Ay Ay
@—12 ~— -1 (w12
504+2 = Ai(x—1)+ Az
52 = Aiz = A; =5 differentiating oncewrt z
(5$ + 2)|x:l = [Al($ - 1) + Al|pz1 = A2 =7
Sz + 2 5 7
@—12 ~ z-1" (w12

13 Putting It All Together
Suppose we have a system described by the linear differential equation
y//_y/_goy:x

So by the above reasoning, itsimpulse response A(t) is:

()Y () = (J)Y () - 30V (w) = X(w)
Y(w) B 1
Xw)  (jw+5)(jw—6)
1
H@) = 9009
. _yn . yn
Mt = 7l st 8
1 1
= —ﬁe 5u(t)—|—ﬁ66 u(t)

Note that the system is not BIBO stable.
Exercise Why?

14 A Look Around

We have covered quite a bit of Fourier transform material. You should be familiar with all of it. Sincei have finite
timein section, i’ m going to have to depend on your not-as-finitetime in order to review all this. Please do so.



