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1 Warning

This set of notes covers discrete time. However, i probably won't be able to talk about everything here; instead i
will highlight important properties or give random examples.! You are advised to consult your lecture notes and your
textbook, since you are responsiblefor everything.

2 DiscreteTime

We begin our discussion of discrete time by attempting to draw some anal ogies between continuous time (CT) and
discretetime (DT).
In DT, our basic signal is §[n]. Thisfunction is nonzero a n = 0 only, as you would expect from a comparison
with d(¢). The mgjor differenceisthat §[n] hasaheight of 1 a n = 0, whereas §(¢) hasinfinite height and area 1.
Our next most basic signal is u[n], which can be constructed from é[n] by taking the running sum from & = —co

tok =n: .
uln] = > d[k]

k=—o0

Comparethisto CT:

This leads us to the conclusion that the local equivaent of integration in DT is the running sum. Differentiation
in CT then becomes a finite difference, the difference between two or more successive samples.? Sometimes, CT
differential equations are approximated by finite differences to convert them to DT difference equations.

One more thing before we move on: in DT, complex exponentias and sinusoids exhibiting a somewhat weird
behavior. Consider two different complex exponentialsin CT: e/« and e/, If w; and w, are not equal, then there
isno way for the two complex exponentia sto ook the same as a function of time.

Now, consider the same two complex exponentialsin DT. We' Il do thisby takingt = n'T", effectively sampling the
CT signa with sampling period 7.2 For the particular choice of wp = wy + ZT—”:

ejwznT

— ej(w1+ ZnT

—  JwinT jE)nT
— ejwlnTejZﬂ'n
— ejwlnT

We can explicitly surpress the dependence on the sampling period 7" by defining anew variable Q = wT'. Werefer
tow as unnormalized frequency and to Q as normalized frequency.

Anyway, in unnormalized or normalized frequency, we still end up with the same basic result— in unnormalized
frequency, you cannot tell the difference between a DT complex exponential at frequency w; and another DT complex
exponential w, = wp + 2Z.

Exercise Show that in normalized frequency, the DT complex exponentid Q, and Q, = Q1 + 27 are the same value
at integer values of n.

10nce again, randomnessis good.

2The most basic finite difference isfirst order: =[n] — =[n — 1]. More on thisif you take math128a and math128b, numerical analysis parts |
and I, whichis highly recommended if you are going to end up coding alot.

3More on sampling later. For now, let’s think about sampling as closing a switch at multiples of time ¢ = »7" and recording the resulting val ues.
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3 DT Convolution

The DT equivalent of the sifting integral is:

zn]= > z[k]o[n — k]

k=—o0

This says that the entire sequence «[r] can be obtained one sample at atime, by summing an infinite sequence of unit
samples, appropriately scaled.
If we have alinear system H, and we take this [n] as input into our system, we end up with the output y[n]:

ylnl = Hlz[n]]
= H] Z z[k]d[n — k]
k=—o0
= > w[KH[5[n— k)]
k=—o0

Thisisonly from assuming linearity.

As with continuous time, we can define the impul se response g[n, k] £ H[d[n — k]] asafunction of two variables
n and k, where n can be interpreted as the current index, and % can be thought of as when the impulse occurred. Now,
if the systemistime-invariant, we don’t really care too much when that impul se happens, only the difference between
when that impul se happened and whatever index we're currently at. So g[n, k] reduces from afunction of two variables
back downto asinglevariable: g[n, k] = h[n — k].

A more elegant way of getting to the same result isto consider the definition of shift-invariance, which istheloca
equivalent of timeinvariancein DT.* Shift invariance says that if i shift asignal and put it into a system, the output is
going to be the same as if i put the unshifted signa into the system first and shifted it later. In math, the delay and
system operators commute:

H{Dy[e[n]]] = Di[H[x[n]]]

Applying this definition of shift invariance, we note that:

H[s[n—k]] = H[Dx

[T
S 3

where we have defined 7[n] =¥ [d[n]], theimpulseresponse. Notethat i’ m going to refer to shift invariance and time
invariance interchangeably.®
Thefinal form of the convolution sum becomes:

yinl= S wlkh[n— 4]

k=—o0

What are we actually doing here? Well, we can interpret our input as the sum of a bunch of scaled and shifted
unit samples. |f we know that our system is LTI and that it has some impulse response i[n], then if we putin ad
function a n — k, the response of the systemwill be ~[n — k]. Now, if we putiné[n — k], scaled by «[k], wewill get
z[k]h[n — k]. If we have awhole bunch of § functionsfor various values of %, we can, by linearity, sum up the whole
outputas > z[k]h[n — k]. Thisprocessisillustratedin Figure 1.

n=—oQ

4The reason why the name is different is that the index » could represent some other variable such as position instead of time. For a concrete
example, think of the position of a pixel in animage. Now, to warp your brain, consider a 3D image changing as a function of time...
5Sorry, premature senility. Maybei should take up skydiving now beforei forget to pull the ripcord.
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3 [n] h[n]

n

)
|

n

(a) an impulse and the corresponding impulse response

x0[n] yO[n]

)
|

x1[n] y1[n]

)
|

x2[n] y2[n]

n

i
|

(b) scaling and shifting the impulse produces a scaled and shifted impulse response

x[n] y[n]

§
|

(c) superposition of xO[n], x1[n], and x2[n] from (b) gives Xx[n];
likewise, superposition of yO[n], y1[n], and y2[n] gives y[n];
so if x[n] is input into our system with impulse response h[n],
the corresponding output is y[n]

Figurel: DT convolution.
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This convolution sum is somewhat easier to perform than the CT version. Please see OWY section 3.2 and ZTF
section 8-4 for examples.®
Exercise Reconcilewhat you that about CT convolution with what you know about DT convolution.
Exercise i claim that you have already seen DT convolution as polynomia multiplication. For proof by example,
multiply z2 + 2z + 1 by 322 + = + 2 and then convolve z[n] = d[n — 2] + 25[n — 1] + d[n] and y[n] = 36[n — 2] +
d[n — 1] + 26[n]. Compare your results.

4 DT Convolution Tricks

DT convolutionis commutative, associative, and distributive over addition.
Exercise Provethis.
Convolution with an impulse gives back the origina signd:

oQ

Snlxxfn] = > [kl -k

k=—oc
= z[n]
where we have used the fact that 6[n — k] isnonzero only at k& = n, and that at n = & it takesonvalue 1.
Convolution with a unit step gives the running sum:

oQ

ulplxw[n] = > wlkluln— k]

k=—oc

= Z z[k]

k=—oc
where we have used the fact that u[n — k] isnonzero only for n — k > 0, or k < n.
Convolution with a shifted impul se shiftsthe original signal:

oQ

S[n—nolxxln] = > w[kld[n—no— K]

k=—oc

= z[n— ng

where we have used the fact that d[n — ng — k] isnonzeroonly a & = n — no.

5 Eigenfunctions

The output y[n] of aDT LTI system H isjust the convolution of the input 2[n] with the impulse response ~[n]. What
if we let z[n] be of theform ¢/", wherew is some rea constant?

yln] = z[n]* hln]
= > xln—kh[k]
k=—o0
= i eI =R p[k]
k=—o0
= ¢ i e_ijh[k]

k=—oc

— eanH(ejQ)

SOWY refersto thefirst edition of your textbook and ZTF to textbook used |ast semester. Bewarned the DT sectionsin ZTF present the material
in asufficiently confusing fashion that i don’t recommend those sectionsto you.
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where 7 (¢/2) £ S eI hlk]. Wewill seelater that H (/%) isthe discrete-time Fourier transform (DTFT) of
Note also that /9" isan eigenfunction.
What if welet z[n] be of theform =z, where z is some complex constant?

yln] = =[]+ hln]
= > a[n—klh[k]

k=—o0
[}

= > Ak

k=—o0
[}

= 2" Z 2R h[k]

k=—o0

= Z"H(z)

where H(z) 2 S e o, 2 *h[k]. Wewill seelater that H (z) isthe Z transform of h[n].
Note also that 2™ isan eigenfunction.

6 Sinusoidal Steady State

What iswe put z[n] = cosQqgn intoaDT LTI system H?
yln] = x[n]«hn]
= (cosQqn) * h[n]

= %(6‘790" + e_jQO") * h[n]
_ %(H(ejﬁo)ejﬁon b H(e=IWo)=i%n)
If we know nothing about system H, thisisall we can say about the output y[r].

However, if we know that h[n] isreal, then we can say something about H (/). Consider H*(e/<):

H(Y) = [Y hlnle @)

= Z h*[n]ejQ"

- Z hln)e=i (=

= H(e_jQ)

In other words, the DTFT H (e/%) is conjugate symmetric. If werewritethisin polar:

H(e1%) = |H ()]l 47
H(e™%) = |H ()
H*(ejQ) — |H(ejQ)|e—jAH(ej9)

The last two equations are equivalent, as derived above. So we can equate their magnitudes and phases. This lets us
say that the magnitude is going to be even and the phase odd.

[H(e )| = [H()]
AH(e_jQ) = —LH(@jQ)
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So what? From above, we had the output of aDT system for a sinusoidal input:

yln] = }(H( 79000 | p(=3Wo) =i%n)

_ 1 Q0| ,7Qon+j LH(e7%) —iWo\|,—jQon+j LH(e=7W0)
[ (e”™)]e + [H(e™70) e ]

N

[|H (e7%0) 3 Qo+ LH(%0) g | (W0)|e=i Qon =i LH(70))

NI NI NI

|H(ejfzo)|[ejQOn+jAH(emo) i e_jgon_jZH(ejWO)]

H (e7%)| cos(Qon + £ H (7))

In other words, a sinusoid input gives a sinusoid output, phase shifted by the phase of the frequency response and
amplitude scaled by the magnitude response.

7 Representations

We begin our discussion of discrete time by noting that the sequence z[n] and the sequence «(nT') contain the same
information. In fact, we can define z,(¢) as the continuoustime representation of =(»1") such that:

oQ

vs(t) = > w(nT)s(t —nT)

n—=—oQ

which isjust an infinite sum of impulses; this aso contains the same information as the plain old sequence =[n] or
x(nT), except that it’s a continous function, instead of a discrete one.

This should not be too surprising. We saw something similar to this when we represented the Fourier series
coefficients a; as afunction of k [thisisjust a sequence or list of values, afunction of a discrete variable], and as a
function of w [thisisjust an infinite sum of impulses, afunction of a continuousvariable].

8 Discrete-TimeFourier Transform (DTFT)

From the beginning of the semester, we saw the FT. Now, the FT transforms a continuous time signal «(¢) into a
function of continousw. What happens if wetry thison our continous time representation of our sequence «[n]?

X;(jw) = /_00 J:s(t)e_jwtdt

oQ

/_Oo[ > w(nI)s(t — nT)]e I dt

® n=—00

= Z x(nT)[/_oo eI (t — nT)]dt
= Y z(nD)] /_ h e~ 39T 5t — nT))dt
= Z x(nT)e_jw"T[/_oo d(t —nT)]dt

= Z x(nT)e_jw"T

n—=—oQ

In continoustime, we decomposed z(¢) into continous complex exponentiase/“*. In discrete time, we have decom-
posed x(¢) into discrete complex exponentials.
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If wereplace z(nT') by z[n], thislast quantity isthe DTFT:

oQ

X(ejm)é Z x[n]e‘jw"T

n=—oQ

The notation X (e/“*) denotesthe DTFT. This notation is more widely used than the onein the textbook.
Note that the discrete complex exponential ¢/ is periodic with period 2%
ej(w-l' ZnT — ejwnTeZﬂ'n
ejwnT

Thismeansthat X (e7“T') will be periodicwith period Z-. Now aslightly weird thing happens—low frequencies show
up at multiples of ZT” and high frequencies end up at multiplesof 7.

To further supress the time dependence, the notation Q = w7 isintroduced, in which case the transform X (e/%)
is periodic with period 2r; low frequencies then occur at multiplesof 2, and high frequencies at multiplesof .
Exercise Giventhat Q = w7, convince yourself that the units of Q are radians per cycle.

A dightly more intuitive reason for why the DTFT is periodic: since you can't tell the difference between e/«n7
and e/ (“+5F)nT you shouldn't be able to tell what frequency at which it appearsin the frequency domain either.

There is another interpretation of the DTFT, arising from the fact that you can think of the time signal as the
sampled version of some continuoustime signa x(t). To sample in time, you multiply in time by an impulse train.
This means that you convolve in frequency with an impulse train, which makes your spectrum periodic. 7" can then be
interpreted as the sampling period. More on thisin the last few lectures.

Note that multiplying in time by an impulsetrainis amathematical trick that we use in order to derive the DTFT.
What we can actually do is sample our continous time z(¢) a periodic intervals¢t = n7T' to obtain z(n7T). Repest:
multiplyingin time by an impulsetrain is a math trick.

The DTFT hasanumber of propertieswhich are summarized on pages 335-336 of OWY; common DTFT transform
pairs are given on OWY pages 338-339.

Personally, i prefer to work with the Z transform, and then utilize the rel ationship between the Z transform and the
DTFT to find a given DTFT. On the other hand, if you know that a certain signa «[n] came from sampling «(¢) and
you know X (w), then you can quickly find the DTFT by making copies of X (w), separated by 2= and scaled by .
More on thisin the next set of notes.

9 Fourier Series, Revisited

Assumethat z(t) isperiodic with period T' = f}—z Also, assume that z(t) issufficiently well-behaved such that we can
represent it by a Fourier series:

(o)
z(t) = Z X, el ot
n=—oo

The Fourier series coefficients X,, can be found by multiplying both sides by e~/™“° and integrating over one
period 7"

(o)
/l‘(t)e_jmwotdt — / Z Xnejnwote—jmwotdt
T T

n=—oQ

oo
E Xn / e]nwote—]mwotdt
T

n=—oQ

We recall the orthogonality relationship for complex exponentials:

ej”wote—jmwotdt — T ifn= m
T 0 otherwise
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This lets us reduce the equation above to:

/ J:(t)e_jmw”tdt
T

TX,,
X = l/ J:(t)e_jmw”tdt

oo
E Xn / e]nwote—]mwotdt
T

n=—oQ

Thislast equation isthe Fourier series analysisintegral.
If we take the Fourier transform of z(¢):

X(w) = Flz()]

= 7 i X, em]

n=—oQ

= i Xy Fled"eo!]

n=—oQ

= 27 Z Xpn6(w — nwo)

n=—oQ

where the X, can be found by the Fourier series analysisintegral above.
Notethat X, isjust asequence of values, indexed on n. Thetimesigna towhichit correspondsin thetimedomain
isperiodicint.

10 DTFT, Revisited

Assume that X (e/“T) is periodic with period wo = 2T, where T is the sampling period. We further assume that
X (e/«T) issufficiently well-behaved such that we can represent it by a Fourier series:

oQ

X(ejWT): Z x[n]e‘jm‘)T

n=—oQ

Note that we choose to use a negative sign, since we'rein the frequency domain. ’
The Fourier series coefficient z[n] can be found by multiplying both sides by /7 and integrating over one
period wq:

oQ

/X(eij)ejmwwa = / Z x[n]e_j"wTejmwwa
wo w

= Z x[n]/ eminwT gjmeT g
We recall the orthogonality relationship for complex exponentials:

e—janejmwwa — wo ifn= m
o 0 otherwise

Thislets us reduce the equation above to:

X(eij)ejmwwa — Z x[n]/ e—inwT jmuwT g

wo
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z[m] = —/ X (el T)edmeT gy
wo
T ) )
— _/ X(e]wT)e]mwwa
2w
T

Thisistheinverse DTFT.
Taking theinverse Fourier transform of X (e« 7):

e(t) = FOUX(T)]
= FY Z z[n]e=InwT]
= > wpF e
= ) a[ls(t—nT)

Thisisthe DTFT.
Notethat «[n] isjust a sequence of values, indexed on n. Its Fourier transformis periodicinw.
z(t) isjust the continuous time representation of the discrete time signal z[n] as discussed above.
Now we have the entire DTFT pair:

oQ

X(ej“’T) = Z x[n]e‘jm"T"
T : :
_ JwTy _jnwTy
z[n] = ZW/z_wX(e Je dw
T
In normalized frequency, the DTFT pair becomes:
X% = Z x[n]e=I"8
z[n] = 1 X (/) el
2w 2

In other words, periodic in one domainimplies discretein the other. Here, periodicin frequency [ X (¢/9)] implies
discrete in time [the z[r]], indexed on n. From the previous section, periodic in time [#(¢)] implies discrete in
frequency [the X,], indexed on n.

Exercise Doesn't thislook familiar? i lifted it from ps7 solutions. Take another 1ook and make sure that you can see
the duality relationship between the FS and the DTFT.

11 Z-Transform (ZT)

Aswith the DTFT, if we start out in continuoustime and then take the Laplace transform of z, (¢):

Xi(s) = /_O:o zg(t)e dt

/_Oo[ > w(nT)s(t — nT)]e=*dt

OOn:

— 00

oQ o0

> x(nT)[/ e~ 3 (t — nT)]dt

— 00

n—=—oQ
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oQ ')

= > x(nT)[/_ e §(t — nT)]dt
= > x(nT)e_s"T[/_oo §(t — nT)]dt

= Z x(nT)e_s"T

n=—oQ

= Z z[n]z""

n=—oQ

where we have made the change of notation z(n7") = z[n] and z = 7.

This development is similar to that of the DTFT. So why do we bother studying the Z transform? For the same
reason as why we study the Laplace transform— there are some signals for which the DTFT does not exist.

What isz = 7 ? It saconformal mapping between the s-plane and the z-plane, taking vertical linesin the s-plane
and making theminto circlesin the z-plane[consider s = ¢ + jw and notethat ¢°” istheradiusof acircleand /7 is
theangle]. In particular, the jw axis ends up as the unit circle, the left half plane ends up inside the unit circle, and the
right half plane ends up outside. This aso suggests that, for a system to be stable, its Z transform should have poles
insidetheunit circle.

Exercise Verify the contents of this paragraph.

For some values of z, the sum will not converge. Those values for which the sum does converge comprise the
region of convergence (ROC) [compare to the ROC of the Laplace transform]. The ROC is a circle centered on the
origin, with its radius the distance from the origin to the outermost pole. Because we consider only the unilateral Z
transform, the ROCs al go outwards.

The properties are summarized on OWY page 654, and are scattered throughout section 8-3 of ZTF; common
transforms are available on OWY page 655, ZTF page 378.

12 Relationships

The relationshi ps between the five transformsthat you have studied and the DTFS/DFS/DFT that you will see againin
ee123 are summarized in the following table;

LT:X(s) = f_oooo r(t)e stdt = ZT:X(2) = >0 xlk]z=F
s=jwl z=ewT |
I—_rX(_]w) — ffooo l‘(t)e_jwtdt discreti_z)e:t:nT DT'_—I-:X(eij) — ZZOI_OO x[n]e—jwnT
periodicize | periodicize |
FSap = [ a(t)e-ikwotqy  Tereiee=nt DFS/DFT

Given that you have the Laplace transform of some time signal «(t), if you evaluate the transform on the jw axis,
you end up with the Fourier transform. If you make the time signa periodic, you end up with a discrete spectrum
[Fourier serieq].

On the other hand, we could start with a continoustime signal = (¢) and make it discrete. If we take its Laplace
transform and utilizethe conformal mapping » = e*7, where T"isthe sampling period, we end up withthe Z transform.
Evaluating the Z tranform on the unit circle gives you thethe DTFT.

To get from the continuous time transforms to the discrete time transforms, we can think of teking our CT «(t)
and multiplyingit by an impulsetrain to get «(n7'). Thisisjust amath trick though— since we only care about the
z(nT'), we can get this by sampling «(¢) at intervalst = nT' [perhaps by using a sample-and-hold, followed by an
A/D converter].

Exercise Follow thelinks between the six transforms and try to get everything straight in your mind. There's alot of
material summarized inthat onetable, so make surethat it makes sense. Drop by during office hoursif not.



