

This material is optional. It will be a preview for those of you who wish to take ee 123 .

1 Introduction

Previously, the discrete Fourier transform was introduced as

$$
\begin{equation*}
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / N} \tag{1}
\end{equation*}
$$

and its inverse transform as

$$
\begin{equation*}
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j 2 \pi k n / N} \tag{2}
\end{equation*}
$$

These transforms, if evaluated explicitly, would result in $O\left(n^{2}\right)$ operations. However, by taking advantage of the properties of $e^{j 2 \pi / N}$, the fast Fourier transform (FFT) reduces the number of operations to $O\left(n \log _{2} n\right)$. If this reduction appears trivial, consider the case where n is 1024; explicit evaluation is two orders of magnitude slower than the FFT.

2 Mathematical Derivation of Time Decimation Algorithm

One of the more useful implementations of the FFT requires N to be a power of two. Given this restriction, we search for a "divide-and-conquer" strategy that lets us divide an N point FFT into two $\frac{N}{2}$ point FFTs, since smaller problems are always easier to work on than larger ones. Once these two smaller FFTs have been performed, their results are then appropriately combined to give a solution for the original FFT.

Using the notation previously discussed in notes 25 , we can write the N point DFT as

$$
\begin{equation*}
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{n k} \tag{3}
\end{equation*}
$$

where $W_{N}=e^{-j 2 \pi / N} . W_{N}$ can be interpreted as the first of the N th roots of unity, the other roots being the other $N-1$ powers of W_{N}.

If the sum above is divided into two separate sums, one of the even components of $x[n]$ and the other of the odd components of $x[n]$ (we are fortunate that N is even), the DFT then becomes

$$
\begin{align*}
X[k] & =\sum_{n=0}^{N / 2-1} x[2 n] W_{N}^{2 n k}+\sum_{n=0}^{N / 2-1} x[2 n+1] W_{N}^{(2 n+1) k} \tag{4}\\
& =\sum_{n=0}^{N / 2-1} x[2 n] W_{N}^{2 n k}+W_{N}^{k} \sum_{n=0}^{N / 2-1} x[2 n+1] W_{N}^{2 n k} \tag{5}
\end{align*}
$$

This division in time is also referred to as "decimation in time".
However, squaring W_{N} gives the first of the $\frac{N}{2}$ th roots of unity. Symbolically,

$$
\begin{align*}
W_{N}^{2} & =\left(e^{-j 2 \pi / N}\right)^{2} \tag{6}\\
& =\left(e^{-j 2 \pi 2 / N}\right) \tag{7}\\
& =\left(e^{-j 2 \pi /(N / 2)}\right) \tag{8}\\
& =W_{N / 2}^{n} \tag{9}
\end{align*}
$$

The DFT then simplifies to

$$
\begin{equation*}
X[k]=\sum_{n=0}^{N / 2-1} x[2 n] W_{N / 2}^{n k}+W_{N}^{k} \sum_{n=0}^{N / 2-1} x[2 n+1] W_{N / 2}^{n k} \tag{10}
\end{equation*}
$$

But the first sum is the $\frac{N}{2}$ point FFT of the even components of $x[n]$ and the second sum is W_{N}^{k} multiplied by the $\frac{N}{2}$ point FFT of the odd components of $x[n]$. We could stop here, having derived an expression for the N point FFT in terms of the sum of two $\frac{N}{2}$ point FFTs, but there is a further simplification that we can do.

For the last $\frac{N}{2}$ terms corresponding to $k=\frac{N}{2}$ to $k=N-1$, we start with Equation (10). Substituting $k=k^{\prime}+\frac{N}{2}$, with k^{\prime} ranging from 0 to $\frac{N}{2}-1$:

$$
\begin{equation*}
X\left[k^{\prime}+\frac{N}{2}\right]=\sum_{n=0}^{N / 2-1} x[2 n] W_{N / 2}^{n\left(k^{\prime}+N / 2\right)}+W_{N}^{k^{\prime}+N / 2} \sum_{n=0}^{N / 2-1} x[2 n+1] W_{N / 2}^{n\left(k^{\prime}+N / 2\right)} \tag{11}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
W_{N / 2}^{n(N / 2)}=1^{n}=1 \tag{12}
\end{equation*}
$$

and that

$$
\begin{equation*}
W_{N}^{N / 2}=\left(e^{-j 2 \pi / N}\right)^{N / 2}=e^{-j \pi}=-1 \tag{13}
\end{equation*}
$$

we then simplify to obtain

$$
\begin{equation*}
X\left[k^{\prime}+\frac{N}{2}\right]=\sum_{n=0}^{N / 2-1} x[2 n] W_{N / 2}^{n k^{\prime}}-W_{N}^{k^{\prime}} \sum_{n=0}^{N / 2-1} x[2 n+1] W_{N / 2}^{n k^{\prime}} \tag{14}
\end{equation*}
$$

The first sum is the $\frac{N}{2}$ point FFT of the even components of $x[n]$ and the second sum is $-W_{N}^{k^{\prime}}$ multiplied by the $N / 2$ point FFT of the odd components of $x[n]$. We now have found a formula for the last $N / 2$ terms corresponding to $k=\frac{N}{2}$ to $k=N-1$.

Equations (10) and (14) together constitute the FFT. This is the pinnacle of life as you know it in ee120.

3 Implementation of Time Decimation Algorithm

In Figure 1, an 8 point FFT has been implemented with adders and multipliers. In part (a), we expand the 8 point FFT into two 4 point FFTs, along with machinery to reconstruct the 8 point FFT from its two smaller components. The upper FFT takes the even components of $x[n]$ as input, and the lower one takes the odd components. In part (b), we expand the 4 point FFT into two 2 point FFTs, and in part (c), that 2 point FFT reduces to a tiny package of lines.

In part (d), we put everything back together. This artful maze of is sometimes referred to as the "butterfly", although it looks more like a mutated spider to me. Your mileage may vary.

Note that the input to the 8 point FFT is not ordered as you would think. For an interesting method of determining what that order should be, consider the fourth input, $x[6]$. If we write 6 in binary, we would obtain 110 . Reversing those bits gives 011 , which is the binary representation of 3 . In general, the order of the input is the bit-reversal of its binary representation.

Note that even though there are n operations at every stage in the butterfly, there are only $\log _{2} n$ stages. This gives an order of growth of $O\left(n \log _{2} n\right)$ for the FFT.

4 Summary

- Appropriately massaging the DFT produces the FFT.
- We have developed the time decimation version of the FFT:

$$
\begin{equation*}
X[k]=\sum_{n=0}^{N / 2-1} x[2 n] W_{N / 2}^{n k}+W_{N}^{k} \sum_{n=0}^{N / 2-1} x[2 n+1] W_{N / 2}^{n k} \tag{15}
\end{equation*}
$$

for $k=0,1, \ldots, N-1$. In other words, the N point FFT is just the sum of the $\frac{N}{2}$ point FFT of the even samples of $x[n]$ and an appropriately scaled $\frac{N}{2}$ point FFT of the odd samples of $x[n]$.

- Properties of W_{N} allow us to rewrite the above as

$$
\begin{align*}
X[k] & =\sum_{n=0}^{N / 2-1} x[2 n] W_{N / 2}^{n k}+W_{N}^{k} \sum_{n=0}^{N / 2-1} x[2 n+1] W_{N / 2}^{n k} \text { for } k=0,1, \ldots \frac{N}{2}-1 \tag{16}\\
X\left[k^{\prime}+\frac{N}{2}\right] & =\sum_{n=0}^{N / 2-1} x[2 n] W_{N / 2}^{n k^{\prime}}-W_{N}^{k^{\prime}} \sum_{n=0}^{N / 2-1} x[2 n+1] W_{N / 2}^{n k^{\prime}} \text { for } k^{\prime}=0,1, \ldots, \frac{N}{2}-1 \tag{17}
\end{align*}
$$

The first equation gives $X[k]$ for $k=0,1, \ldots, \frac{N}{2}-1$, and the second equation gives $X[k]$ for $k=\frac{N}{2}, \frac{N}{2}+$ $1, \ldots, N-1$.

- The order of growth of this algorithm is $O\left(n \log _{2} n\right)$.

References

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. Cambridge: MIT Press, 1990.
[2] G. Strang. Linear Algebra and Its Applications. San Diego: Harcourt, Brace, Jovanovich, 1988.

(a) The expansion of the 8 point FFT.

(b) The expansion of the 4 point FFT.

(c) The expansion of the 2 point FFT.

(d) The whole mess.

Figure 1: Implementing the FFT.

