
Linear difference and differential
equations

In this section we undertake a deeper study of linear difference and differential equations than that
in section ??, using the Z transform and the Laplace transform.

A linear time-invariant difference equation has the form

y�n��a1y�n�1�� � � ��amy�n�m� � b0x�n�� � � ��bkx�n� k�� n � 0� (1)

This equation describes a discrete-time linear time-invariant system in which x�n� is the input and
y�n� is the output at time n. The ai and bj are constant coefficients. We are given:

the input signal x�n��n � 0, with x�n� � 0�n � 0,
and the initial conditions y��1� � ȳ��1�� � � � �y��m� � ȳ��m�; and
our task is to determine the output signal y�n��n � 0.

There is a procedure to calculate the output. Rewrite (1) as

y�n� ��a1y�n�1���� ��amy�n�m��b0x�n�� � � ��bkx�n� k�� (2)

and recursively use (2) to obtain y�0��y�1��y�2�� � � �. Taking n � 0 in (2) yields

y�0� � �a1y��1���� ��amy��m��b0x�0�� � � ��bkx��k�

� �a1ȳ��1���� ��amȳ��m��b0x�0��

All the terms on the right are known from the initial conditions and the input x�0�, so we can
calculate y�0�. Next, taking n � 1 in (2),

y�1� ��a1y�0�� � � ��amy�1�m��b0x�1�� � � ��bkx�1� k��

All the terms on the right are known either from the given data or from precalculated values—y�0�
in this case. We can proceed in this way to calculate the remaining values of the output sequence
y�2��y�3�� � � �, one at a time.

We now use the Z transform to calculate the entire output sequence. To obtain the Z transform of
the sequences in (1), multiply both sides by z�n and sum,

∞

∑
n�0

y�n�z�n�a1

∞

∑
n�0

y�n�1�z�n� � � ��am

∞

∑
n�0

y�n�m�z�n � b0

∞

∑
n�0

x�n�z�n� � � ��bk

∞

∑
n�0

x�n�k�z�n�

(3)
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Define the unilateral Z transforms

X̂�z� �
∞

∑
n�0

x�n�z�n� Ŷ �z� �
∞

∑
n�0

y�n�z�n�

Each sum in (3) can be expressed in terms of Ŷ or X̂ :

∞

∑
n�0

y�n�1�z�n � ȳ��1�z0 � z�1
∞

∑
n�1

y�n�1�z��n�1� � ȳ��1�z0 � z�1Ŷ �z��

∞

∑
n�0

y�n�2�z�n � ȳ��2�z0 � ȳ��1�z�1 � z�2
∞

∑
n�2

y�n�2�z��n�2�

� ȳ��2�z0 � ȳ��1�z�1 � z�2Ŷ �z��

� � �
∞

∑
n�0

y�n�m�z�n � ȳ��m�z0 � � � �� ȳ��1�z��m�1�� z�m
∞

∑
n�m

y�n�m�z��n�m�

� ȳ��m�z0 � � � �� ȳ��1�z��m�1�� z�mŶ �z��

Recalling that x�n� � 0�n � 0,

∞

∑
n�0

x�n�1�z�n � x��1�z0 � z�1X̂�z� � z�1X̂�z�

∞

∑
n�0

x�n�2�z�n � x��2�z0 � x��1�z�1 � z�2X̂�z� � z�2X̂�z�

� � �
∞

∑
n�0

x�n� k�z�n � x��k�z0 � � � �� x��1�z��k�1�� z�kX̂�z� � z�kX̂�z��

Substituting these relations in (3) yields

Ŷ �z� � a1�z
�1Ŷ �z�� ȳ��1�z0�� � � ��am�z

�mŶ �z�� ȳ��m�z0 � � � � ȳ��1�z��m�1��

� b0X̂�z��b1z�1X̂�z�� � � �bkX̂z�k�

from which, by rearranging terms, we obtain

�1�a1z�1 � � � ��amz�m�Ŷ �z� � �b0 �b1z�1 � � � ��bkz�k�X̂�z��Ĉ�z��

where Ĉ�z� is an expression involving only the initial conditions ȳ��1�� � � � � ȳ��m�. Therefore,

Ŷ �z� �
b0 �b1z�1 � � � �bkz�k

1�a1z�1 � � � ��amz�m X̂�z��
Ĉ�z�

1�a1z�1 � � � ��amz�m

We rewrite this relation as

Ŷ �z� � Ĥ�z�X̂�z��
Ĉ�z�

1�a1z�1 � � � ��amz�m � (4)

where

Ĥ�z� � b0�b1z�1�����bkz�k

1�a1z�1�����amz�m (5)
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Observe that if the initial conditions are all zero, Ĉ�z� � 0, and we only have the first term on the
right in (4); and if the input is zero—i.e., x�n� � 0�n � 0—then X̂�z� � 0, and we only have the
second term.

To determine y�n��n � 0, we take the inverse Z transform in (4). Therefore,

�n � 0� y�n� � yzs�n�� yzi�n�� (6)

where yzs�n�, the inverse Z transform of ĤX̂ , is the zero-state response, and yzi�n�, the inverse Z
transform of Ĉ�z���1� a1z�1 � � � �� amz�m�, is the zero-input response. The zero-state response,
also called the forced response, is the output when all initial conditions are zero. The zero-input
response, also called the natural response, is the output when the input is zero.

Thus the (total) response is the sum of the zero-state and zero-input response. We first encountered
this property of linearity in ??.

By definition, the transfer function is the Z transform of the zero-state impulse response. Taking
Ĉ � 0 and X̂ � 1 in (4) shows that the transfer function is Ĥ�z�. From (5) we see that Ĥ can be
written down by inspection of the difference equation (1). If the system is stable—all poles of Ĥ
are inside the unit circle—the frequency response is

�ω� H�ω� � Ĥ�eiω� �
b0 �b1e�iω� � � ��bke�ikω

1�a1e�iω� � � ��ame�imω �

We saw this relation in (??).

Example 0.1: Consider the difference equation

y�n��
5
6

y�n�1��
1
6

y�n�2� � x�n�� n � 0�

Taking Z transforms yields

Ŷ �z��
5
6
�z�1Ŷ �z�� ȳ��1���

1
6
�z�2Ŷ �z�� ȳ��2�� ȳ��1�z�1� � X̂�z��

Therefore

Ŷ �z� �
1

1� 5
6z�1 � 1

6 z�2
X̂�z��

5
6 ȳ��1�� 1

6 ȳ��2�� 1
6 ȳ��1�z�1

1� 5
6z�1 � 1

6z�2

�
z2

z2� 5
6 z� 1

6

X̂�z��
� 5

6 ȳ��1�� 1
6 ȳ��2��z2 � 1

6 ȳ��1�z

z2� 5
6z� 1

6

�

from which we can obtain Ŷ for a specified X̂ and initial conditions ȳ��1�� ȳ��2�. The
transfer function is

Ĥ�z� �
z2

z2 � 5
6z� 1

6

�
z2

�z� 1
3��z�

1
2�
�

which has poles at z � 1�3 and z � 1�2 (and two zeros at z � 0). The system is stable.
The zero-state impulse response h is the inverse Z transform ofĤ�z�, which we obtain
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using partial fraction expansion,

Ĥ�z� � z

�
�2

z� 1
3

�
3

z� 1
2

�

so that

�n � 0� h�n� ��2

�
1
3

�n

u�n��3

�
1
2

�n

u�n��

We can recognize that the impulse response consists of two terms, each contributed by
one pole of the transfer function.

Suppose the initial conditions are ȳ��1� � 1� ȳ��2� � 1 and the input x is the unit step,
so X̂�z� � z��z�1�. Then the zero-input response, yzi, has Z transform

Ŷzi�z� �
� 5

6 ȳ��1�� 1
6 ȳ��2��z2 � 1

6 ȳ��1�z

�z� 1
3��z�

1
2�

�
z2 � 1

6z

�z� 1
3��z�

1
2�

� z

�
�3

z� 1
3

�
4

z� 1
2

�
�

so

yzi�n� ��3

�
1
3

�n

u�n��4

�
1
2

�n

u�n��

The zero-state response, yzs, has Z transform

Ŷzs�z� � Ĥ�z�X̂�z� �
z3

�z� 1
3 ��z�

1
2��z�1�

� z

�
1

z� 1
3

�
�3

z� 1
2

�
3

z�1

�
�

so

yzs�n� �

�
1
3

�n

u�n��3

�
1
2

�n

u�n��3u�n��

The (total) response

y�n� � yzs�n�� yzi�n� � 3u�n�� ��2�1�3�n ��1�2�n�u�n��

can also be expressed as the sum of the steady-state and the transient response with
yss�n� � 3u�n� and ytr�n� ��2�1�3�nu�n���1�2�nu�n�. Note that the decomposition
of the response into the sum of the zero-state and zero-input responses is different from
its decomposition into the steady-state and transient responses.

The analogous development for continuous-time makes use of the Laplace transform. A linear
time-invariant differential equation has the form

dmy
dtm �t��am�1

dm�1y
dtm�1 �t�� � � ��a1

dy
dt

�t��a0y�t� � bk
dkx
dtk �t�� � � ��b1

dx
dt

�t��b0x�t�� t � 0 (7)

The differential equation describes a continuous-time linear time-invariant system in which x�t� is
the input and y�t� is the output at time t. The ai and bj are constant coefficients. We are given:
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the input signal x�t�� t � 0,

and the initial conditions y�0� � ȳ�0�� dy
dt �0� � ȳ�1��0�� � � � � dm�1y

dtm�1 �0� � ȳ�m�1��0�; and
our task is to determine the output signal y�t�� t � 0.

Unlike for (1) we don’t need the initial conditions for the derivatives of x since those are determined
from the data x�t�� t � 0.

Because time is continuous, there is no recursive procedure for calculating the output from the given
data as we did in (2). Instead we calculate the output signal using the Laplace transform.

Define the unilateral Laplace transforms

X̂�s� �
� ∞

0
x�t�e�stdt� Ŷ �s� �

� ∞

0
y�t�e�stdt�

We want to obtain the unilateral Laplace transforms of the derivatives of y and x in terms of the
unilateral Laplace transform of y, x. These transforms are slightly different from each other and
from those in table ?? because the interpretation of these derivatives in (7) are different.

The derivative y�1��t� � dy
dt �t� and y are related by

y�t� � y�0��
� t

0
y�1��τ�dτ � ȳ�0��

� t

0
y�1��τ�dτ� t � 0�

Using integration by parts, and denoting byŶ �1��s� the Laplace transform of y�1�, yields

Ŷ �s� �

� ∞

0
y�t�e�stdt �

� ∞

0
ȳ�0�e�stdt �

� ∞

0

�� t

0
y�1��τ�dτ

�
e�stdt

�
1
s

ȳ�0��
1
s

� t

0
y�1��τ�dτe�st �∞t�0 �

1
s

� ∞

0
y�1��t�e�stdt

�
1
s
�Ŷ �1��s�� ȳ�0���

Therefore,

Ŷ �1��s� � sŶ �s�� ȳ�0�� (8)

If we repeat this procedure, we get the Laplace transforms of the higher-order derivatives,

Ŷ �2��s� � sŶ �1��s�� ȳ�1��0�

� s2Ŷ �s�� sȳ�0�� ȳ�1��0�

� � �

Ŷ �m��s� � smŶ �s�� sm�1ȳ�0�� sm�2ȳ�1��0���� �� ȳ�m�1��0��

Here Ŷ �2� is the Laplace transform of the second derivative, y�2� � d2y
dt2 , and Ŷ �m� is the Laplace

transform of the mth derivative, y�m� � dmy
dtm .

On the other hand, the interpretation of the input signal x is that x�t� � x�t�u�t� for all t � Reals, so
x�1��t� � dx

dt �t� for all t � Reals. Hence from table ??,

X̂ �1��s� � sX̂�s�

� � �

X̂ �k��s� � skX̂�s��
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where X̂ �1� is the Laplace transform of x�1� � dx
dt , and X̂ �k� is the Laplace transform of x�k� � dkx

dtk .

By substituting from the relations just derived, we obtain the unilateral Laplace transforms of all the
terms in (7),

�smŶ �s�� sm�1ȳ�0���� �� ȳm�1�0���am�1�s
m�1Ŷ �s�� sm�2ȳ�0���� �� ȳm�2�0��

� � ��a1�sŶ �s�� ȳ�0���a0Ŷ �s� � bkskX̂�s�� � � ��b1sX̂�s��b0X̂�s��

Rearranging terms yields

�sm �am�1sm�1 � � � ��a1s�a0�Ŷ �s� � �bksk � � � ��b1s�b0�X̂�s��Ĉ�s��

in which Ĉ is an expression involving only the intial conditions ȳ�0�� � � � � ȳ�m�1��0�. Therefore,

Ŷ �s� �
bksk �bk�1sk�1 � � � �b1s�b0

sm �am�1sm�1 � � � �a1s�a0
X̂�s��

Ĉ�s�
sm �am�1sm�1 � � � �a1s�a0

� (9)

which we also write as

Ŷ �s� � Ĥ�s�X̂�s��
Ĉ�s�

sm �am�1sm�1 � � � �a1s�a0
� (10)

in which

Ĥ�s� � bksk�����b1s�b0
sm�����a1s�a0

� (11)

If the initial conditions are all zero,Ĉ�s� � 0, and we only have the first term on the right in (10); if
the input is zero—i.e., x�t� � 0 for all t—then X̂�s� � 0, and we only get the second term in (10).

Taking the inverse Laplace transform, we can express the output signal y�t� as

�t � 0� y�t� � yzs�t�� yzi�t��

where yzs�t�, the inverse Laplace transform of ĤX̂ , is the zero-state or forced response and yzi�t�,
the inverse Laplace transform of Ĉ�s���sm � � � �� a0�, is the zero-input or natural response. The
(total) response is the sum of the zero-state and zero-input response, which is a general property of
linear systems.

By definition, the transfer function is the Laplace transform of the zero-state impulse response.
Taking Ĉ � 0 and X̂ � 1—the Laplace transform of the unit impulse—in (10) shows that the transfer
function is Ĥ�s� which, as we see from (11), can be written down by inspection of the differential
equation (7). If the system is stable—all poles of Ĥ�s� have real parts strictly less than zero—the
frequency response is

�ω� H�ω� � Ĥ�iω� �
bk�iω�k � � � ��b1iω�b0

�iω�m � � � ��a1iω�a0
�

We saw this relation in (??).
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Example 0.2: We find the response y�t�� t � 0, for the differential equation

d2y
dt2 �3

dy
dt

�2y � 3x�t��
dx
dt

�

when the input is a unit step x�t� � u�t� and the initial conditions are y�0� � 1�y�1��0� �
2. Taking Laplace transforms of both sides yields

�s2Ŷ �s�� sȳ�0�� ȳ�1��0���3�sŶ �s�� ȳ�0���2Ŷ �s� � 3X̂�s�� sX̂�s��

Therefore,

Ŷ �s� �
s�3

s2 �3s�2
X̂�s��

sȳ�0�� ȳ�1��0��3ȳ�0�
s2 �3s�2

�

Substituting X̂�s� � 1�s, ȳ�0� � 1� ȳ�1� � 2, yields

Ŷ �s� �
s�3

s�s2 �3s�2�
�

s�5
s2 �3s�2

� �
3�2

s
�

2
s�1

�
1�2
s�2

�� �
4

s�1
�

3
s�2

��

Taking inverse Laplace transforms gives

y�t� � yzs�t�� yzi�t�

� �
3
2

u�t��2e�tu�t��
1
2

e�2tu�t��� �4e�t u�t��3e�2tu�t��

�
3
2

u�t�� �2e�t �
5
2

e�2t �u�t�

� yss�t�� ytr�t��

As in the case of difference equations, the decomposition of the response into zero-
state and zero-input responses is different from the decomposition into transient and
steady-state responses. (Indeed, the steady-state response does not exist if the system
is unstable, whereas the former decomposition always exists.)

0.1 State-space models

Section ?? introduced single-input, single-output (SISO) multidimensional of discrete-time and
continuous-time LTI systems. We use transform techniques to understand the behavior of these
models.

The discrete-time SISO state-space model is

� n � 0� s�n�1� � As�n��bx�n� (12)

y�n� � cT s�n��dx�n� (13)

where s�n� � RealsN is the state, x�n� � Reals is the input, and y�n� � Reals is the output at time
n. In this �A�b�c�d� representation, A is an N�N (square) matrix, b�c are N-dimensional column
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vectors, and d is a scalar. If the initial state is s�0�, the state response and the output response of this
system to an input sequence x�0��x�1�� � � � are, respectively,

s�n� � Ans�0��
n�1

∑
m�0

An�1�mbx�m� (14)

y�n� � cT Ans�0���
n�1

∑
m�0

cT An�1�mbx�m��dx�n�	 (15)

for all n � 0. The state-space model may be used to calculate these responses recursively. We study
how to obtain their Z transforms. The key is to compute the Z transform of the entire N�N matrix
sequence An�n � 0.

Observe that
∑∞

n�0 z�nAn � �I� z�1A��1� (16)

Here z is a complex number and I is the N�N identity matrix. The series on the left is an infinite
sum of N �N matrices which converges to the N �N matrix on the right, for z � RoC. RoC is
determined later.

Assuming the series converges, it is easy to check the equality (16): Just multiply both sides by
�I� z�1A� and verify that

�I� z�1A�
∞

∑
n�0

z�nAn �
∞

∑
n�0

z�nA�n�
∞

∑
n�0

z��n�1�An�1 � z0A0 � I�

Next, denote by F the matrix inverse,

F�z� � �I� z�1A��1 � z�zI�A��1� (17)

and the coefficients of An and F�z� by

An � �ai j�n� � 1 
 i� j 
 N�� F�z� � � fi j�z� � 1 
 i� j 
 N��

Then fi j�z� � ∑∞
n�0 z�nai j�n� is the Z transform of the sequence ai j�n��n � 0, 1 
 i� j 
 N. So we

can obtain An�n � 0, by taking the inverse Z transform of the coefficients of F�z�. Consider an
example.

Example 0.3: Let

A �

�
2 1
3 4

�
�

so

�zI�A��1 �

�
z�2 �1
�3 z�4

�
�1

�
1

det�zI�A�

�
z�4 1

3 z�2

�
�

in which det�zI�A� denotes the determinant of �zI�A�,

det�zI�A� � �z�2��z�4��3 � z2�6z�5 � �z�1��z�5��
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Hence,

F�z� � z�zI�A��1 �
z

�z�1��z�5�

�
z�4 1

3 z�2

�
�

�
z�z�4�

�z�1��z�5�
z

�z�1��z�5�
3z

�z�1��z�5�
z�z�2�

�z�1��z�5�

�
�

The partial fraction expansion of the coefficients of F is

F�z� �

�
�3�4�z

z�1 � �1�4�z
z�5

��1�4�z
z�1 � �1�4�z

z�5
��3�4�z

z�1 � �3�4�z
z�5

�1�4�z
z�1 � �3�4�z

z�5

�
�

From table ?? we find the inverse Z transform of F�z�: for all n � 0,

An �

� 3
4 u�n�� 1

45nu�n� �1
4u�n�� 1

45nu�n�
� 3

4u�n�� 3
45nu�n� 1

4u�n�� 3
4 5nu�n�

�
�

which is more revealingly expressed as

An �

�
3�4 �1�4
�3�4 1�4

�
�5n

�
1�4 1�4
3�4 3�4

�
� n � 0�

because it shows that the variation in n of An is determined by the two poles, at z � 1
and z � 5, in the coefficients of F�z�. Moreover, these two poles are the zeros of

det�zI�A� � �z�1��z�5��

This determinant is called the characterstic polynomial of the matrix A and its zeros
are called the eigenvalues of A. The domain of convergence is RoC� �z�Complex � �z��
5	.

We return to the general case in (17). Denote the matrix inverse as

�zI�A��1 �
1

det�zI�A�
G�z��

in which G�z� is the N�N matrix of co-factors of �zI�A�. Hence each coefficient fi j�z� is a rational
polynomial whose denominator is the characteristic polynomial of A, det�zI�A�. So all coefficients
of F�z� have the same poles, namely, the eigenvalues of A. In order for the system (12), (13) to be
stable the poles of F—that is, the eigenvalues of A—must have magnitudes strictly smaller than 1.

Suppose the characteristic polynomial of A has N distinct zeros p1� � � � � pN :

det�zI�A� � �z� p1� � � � �z� pN��

Then the partial fraction expansion of F�z� has the form

F�z� �
z

z� p1
R1 � � � ��

z
z� pN

RN �
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in which Ri is the matrix of residues of the coefficients of F . at the pole pi. Ri is a constant matrix,
possibly with complex coefficients if pi is complex. Recalling that z

z�pi
is the inverse Z transform

of pn
i u�n�, we can take the inverse Z transform of F�z� to conclude that

An � pn
1R1 � � � � pn

NRN � n � 0� (18)

Thus An is a linear combination of pn
1� � � � � pn

N .

We can decompose the response (15) into the zero-input and zero-state responses, expressing the
latter as a convolution sum,

y�n� � cT Ans�0��
n

∑
m�0

h�n�m�x�m�� n � 0�

where the (zero-state) impulse response is

h�n� �

�
d� n � 0
cT An�1b� n � 1

�

Let X̂ �Ŷ � Ĥ�Ŷzi be the Z transforms

X̂�z� �
∞

∑
n�0

x�n�z�n� Ŷ �z� �
∞

∑
n�0

y�n�z�n� Ĥ�z� �
∞

∑
n�0

h�n�z�n� Ŷzi�z� �
∞

∑
n�0

cT z�nAns�0��

Then
Ŷ � ĤX̂ � Ŷzi�

Because ∑∞
n�0 z�nAn � z�zI�A��1, we obtain

Ĥ�z� � cT �zI�A��1b�d,

and
Ŷzi�z� � zcT �zI�A��1s�0��

We continue with the previous example.

Example 0.4: Suppose A is as in example 0.3, bT � �1 1��cT � �2 0��d � 3, and
�s�0��T � �0 4�. Then the transfer function is

Ĥ�z� � �2 0�

�
�z�4�

�z�1��z�5�
1

�z�1��z�5�
3

�z�1��z�5�
�z�2�

�z�1��z�5�

��
1
1

�
�3 �

2�z�4��2
�z�1��z�5�

�3�

and the Z transform of the zero-input response is

Ŷzi�z� � �2 0�

�
z�z�4�

�z�1��z�5�
z

�z�1��z�5�
3z

�z�1��z�5�
z�z�2�

�z�1��z�5�

��
0
4

�
�

8z
�z�1��z�5�

�
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The continuous-time �A�b�c�d� SISO state-space model is

v̇�t� � Av�t��bx�t�� (19)

y�t� � cT v�t��dx�t�� (20)

where, for t � Reals�, v�t� � RealsN is the state, x�t� � Reals is the input, and y�t� � Reals is the
output. A is an N�N matrix, and b�c are N-dimensional column vectors, and d is a scalar. (We use
v instead of s to denote the state, because s is reserved for the Laplace transform variable.)

Given the initial state v�0� and the input signal x�t�� t � 0, we will show that the state response and
the output response are determined by the formulas

v�t� � etAv�0��
� t

0
e�t�τ�Abx�τ�dτ� (21)

y�t� � cT etAv�0�� �

� t

0
cT e�t�τ�Abx�τ�dτ��dx�t�� (22)

In these formulas, etA or exp�tA� is the name of the N�N matrix

etA �
∞

∑
k�0

�tA�k

k!
� I � tA�

�tA�2

2!
�

�tA�3

3!
� � � � � (23)

where �tA�k is the matrix tA multiplied by itself k times, and �tA�0 � I, the N�N identity matrix.
Definition (23) of the matrix exponential is the natural generalization of the exponential of a real or
complex number. (The series in (23) is absolutely summable.)

Unlike in the discrete-time case, there is no recursive procedure to compute the responses (21), (22).
This is because time is continuous, and the difficulty has to do with the integrals in these formulas.
For numerical calculation, one resorts to a finite sum approximation of the integrals, as we indicated
in section ??. The Laplace transform provides an alternative approach that is exact.

The key to proving (21) is the fact that etA� t � 0 is the solution to the differential equation

d
dt

etA � AetA� t � 0� (24)

with initial condition e0A � I. Note that (22) follows immediately from (21) and (20).

To verify (24) we substitute for etA from (23) and differentiate the sum term by term,

d
dt

etA �
∞

∑
k�0

d
dt

�tA�k

k!
�

∞

∑
k�1

kA
k!

�tA�k�1 � A
∞

∑
k�1

�tA�k�1

�k�1�!
� AetA�

We can now verify that (21) is indeed the solution of (19) by taking derivatives of both sides and
using (24):

v̇�t� � AetAv�0�� e0Abx�t��
� t

0
Ae�t�τ�Abx�τ�dτ

� A�etAv�0��
� t

0
Ae�t�τ�Abx�τ�dτ��bx�t�

� Av�t��bx�t��
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We turn to the main difficulty in calculating the terms on the right in the responses (21), (22), namely
the calculation of the N�N matrix etA� t � 0. We determine its Laplace transform, denoting it by

G�s� �
� ∞

0
etAe�stdt�

This means that gi j�s� is the Laplace transform of ai j�t�� t � 0, if we denote by ai j�t��gi j�s� the
coefficients of the N�N matrices etA and G�s�. The region of convergence of G, RoC, is determined
later.

Using the derivative formula (8) in (24) we see that

sG�s�� I � AG�s��

so that
G�s� �

� ∞
0 etAe�stdt � �sI�A��1� (25)

Example 0.5: Let

A �

�
1 2
�2 1

�
�

so

�sI�A��1 �

�
s�1 �2

2 s�1

�
�1

�
1

det�sI�A�

�
s�1 2
�2 s�1

�
�

The determinant is

det�sI�A� � �s�1�2 �4 � �s�1�2i��s�1�2i��

so

�sI�A��1 �

�
s�1

�s�1�2i��s�1�2i�
2

�s�1�2i��s�1�2i�
�2

�s�1�2i��s�1�2i�
s�1

�s�1�2i��s�1�2i�

�

�

�
1�2

s�1�2i �
1�2

s�1�2i
i�2

s�1�2i �
�i�2

s�1�2i
�i�2

s�1�2i �
i�2

s�1�2i
1�2

s�1�2i �
1�2

s�1�2i

�
�

The region of convergence RoC � �s � Complex � Re�s	 � 1	. We can now find the
inverse Laplace transform using table ?? and express it in two ways: for all t � 0,

etA � e�1�2i�t
�

1�2 i�2
�i�2 1�2

�
� e�1�2i�t

�
1�2 �i�2
i�2 1�2

�

� et
�

cos2t sin2t
�sin2t cos 2t

�
�

The first expression shows etA as a linear combination of the exponentials e�1�2i�t and
e�1�2i�t , in which the exponents, 1� 2i and 1� 2i, are the two eigenvalues of A—that
is, the zeros of its characteristic polynomial, det�sI�A�. The second expression shows
that etA is sinusoidal with frequency 2 radians/sec equal to the imaginary part of the
eigenvalues whose amplitude grows exponentially corresponding to the real part of the
eigenvalues.
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We return to the general case in (25). Denote the matrix inverse as

G�s� � �sI�A��1 �
1

det�sI�A�
K�s��

in which K�s� is the N �N matrix of co-factors of �sI �A�. Each coefficient gi j�s� of G�s� is a
rational polynomial of A whose denominator is the characterstic polynomial of A, det�sI �A�. So
all coefficients of G�s� have the same poles—the eigenvalues of A. For the system (19), (20) to
be stable, the poles of G�s� must have strictly negative real parts. The system of example (0.5) is
unstable, because the real part of the eigenvalues is �1.

Suppose the characteristic polynomial has N distinct zeros p1� � � � � pN ,

det�sI�A� � �s� p1� � � � �s� pN��

Then the partial fraction expansion of G�s� has the form

G�s� � �sI�A��1 �
1

s� p1
R1 � � � ��

1
s� pN

RN �

in which Ri is the matrix of residues at the pole pi of the coefficients of G�s�. Ri is a constant matrix,
possibly with complex coefficients, if pi is complex. Because the inverse Laplace transform of 1

s�pi

is epitu�t�, the inverse Laplace transform of �sI�A��1 is

etAu�t� � �ep1tR1 � � � �� epNtRN �u�t�� (26)

Thus the matrix etA as a function of t is a linear combination of ep1t � � � � �epNt , where the pi are the
eigenvalues of A—that is the zeros of det�sI�A�.

We decompose the response (22) into the sum of the zero-input and zero-state responses, expressing
the latter as a convolution integral,

y�t� � cT etAv�0��
� t

0
h�t � τ�x�τ�dτ� t � 0�

in which the (zero-state) impulse response is: for all t � Reals,

h�t� � cT etAbu�t��dδ�t��

(Here δ is of course the Dirac delta function.) Let X̂ �Ŷ � Ĥ�Ŷzi be the Laplace transforms

X̂�s� �
� ∞

0
x�t�e�stdt� Ŷ �s� �

� ∞

0
y�t�e�st dt� Ĥ�s� �

� ∞

�∞
h�t�e�stdt� Ŷzi�s� �

� ∞

0
cT etAv�0�e�stdt�

Then
Ŷ � ĤX̂ � Ŷzi�

in which
Ĥ�s� � cT �sI�A��1b�d�

and
Ŷzi�s� � cT �sI�A��1v�0��

We continue with example 0.5.
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Example 0.6: Suppose A is as in example 0.5, bT � �1 1�T �cT � �2 0�T �d � 3, and
v�0�T � �0 4�T . Then the transfer function is

Ĥ�s� � �2 0�

�
s�1

�s�1�2
�4

�2
�s�1�2

�4
2

�s�1�2
�4

s�1
�s�1�2

�4

��
1
1

�
�3 �

2s�6
�s�1�2�4

�3�

and the Laplace transform of the zero-input response is

Ŷzi�s� � �2 0�

�
s�1

�s�1�2
�4

�2
�s�1�2

�4
2

�s�1�2
�4

s�1
�s�1�2

�4

��
0
4

�
�

�16
�s�1�2�4

�

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some thought,
requires some conceptualization. Problems labeled E are usually mechanical, those labeled T re-
quire a plan of attack, those labeled C usually have more than one defensible answer.

1. E Determine the zero-input and zero-state responses, and the transfer function for the follow-
ing. In both cases take y��1� � y��2� � 0 and x�n� � u�n�.

(a) y�n�� y�n�2� � x�n��n � 0.

(b) y�n��2y�n�1�� y�n�2� � x�n��n � 0.

2. E Determine the zero-input and the zero-state responses for the following.

(a) 5ẏ�10y � 2x�y�0� � 2�x�t� � u�t��

(b) ÿ�5ẏ�6y ��4x�3ẋ�y�0� ��1� ẏ�0� � 5�x�t� � e�tu�t��

(c) ÿ�4y � 8x�y�0� � 1� ẏ�0� � 2�x�t� � u�t��

(d) ÿ�2ẏ�5y � ẋ�y�0� � 2� ẏ�0� � 0�x�t� � e�tu�t��

3. T Consider the circuit of figure 1. The input is the voltage x, the output is the capacitor voltage
v. The inductor current is called i.

+

-
x(t)

R

L

v(t)
i(t)

r

C

+

-

Figure 1: Circuit of problem 3

(a) Derive the �A�b�c�d� representation for this system using s�t� � �i�t��v�t��T as the state.



0.1. STATE-SPACE MODELS 15

(b) Obtain an �F�g�h�k� representation for a discrete-time model of the same circuit by sam-
pling at times kT�k � 0�1� � � � and using the approximation ṡ�kT � � 1�T �s��k�1�T ��
s�kT ��� (This is called a forward-Euler approximation.)

4. E For the matrix A in example 0.3, determine etA� t � 0.

5. E For the matrix A in example 0.5, determine An�n � 0.

6. T A continuous-time SISO system has �A�b�c�d� representation with

A �

�
a b
�b a

�
�

in which a�b are real constants.

(a) Find the eigenvalues of A.

(b) For what values of a�b is the SISO system stable?

(c) Calculate etA� t � 0.

(d) Suppose b � c � �1 0�T , and d � 0. Find the transfer function.

7. T Let A be an N�N matrix. Let p be an eigenvalue of A. An N-dimensional (column) vector
e, possibly complex-valued, is said to be an eigenvector of A corresponding to p if e �� 0 and
Ae � pe. Note that an eigenvector always exists since det�pI�A� � 0. Find eigenvectors for
each of the two eigenvalues of the matrices in examples0.3 and 0.5.

8. E Let A be a square matrix with eigenvalue p and corresponding eigenvector e. Determine
the response of the following.

(a) s�k�1� � As�k��k � 0; s�0� � e�

(b) ṡ�t� � As�t�� t � 0; s�0� � e�
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