
1

EECS 122:
Introduction to Computer Networks

Overlay Networks and P2P Networks

Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776

2

Overlay Networks: Motivations

� Changes in the network happen very slowly

� Why?
- Internet network is a shared infrastructure; need to achieve

consensus (IETF)

- Many of proposals require to change a large number of
routers (e.g., IP Multicast, QoS); otherwise end-users won’t
benefit

� Proposed changes that haven’t happened yet on large
scale:

- More Addresses (IPv6 ‘91)

- Security (IPSEC ‘93); Multicast (IP multicast ‘90)

3

Motivations (cont’d)

� One size does not fit all

� Applications need different levels of
- Reliability

- Performance (latency)

- Security

- Access control (e.g., who is allowed to join a multicast
group)

- …

4

Goals

� Make it easy to deploy new functionalities in the
network � accelerate the pace of innovation

� Allow users to customize their service

5

Solution

� Deploy processing in the network
� Have packets processed as they traverse the

network

AS-1
IP

AS-1
Overlay Network
(over IP)

6

Overview

� Resilient Overlay Network (RON)

� Overlay Multicast

� Peer-to-peer systems

2

7

Resilient Overlay Network (RON)

� Premise: by building application overlay network, can increase
performance and reliability of routing

� Install N computers at different Internet locations

� Each computer acts as an overlay network router
- Between each overlay router is an IP tunnel (logical link)

- Logical overlay topology is all-to-all (N^2)

� Computers actively measure each logical link in real time for
- Packet loss rate, latency, throughput, etc

� Route overlay network traffic based on measured characteristics

8

Example

Default IP path determined by BGP & OSPF

Reroute traffic using red alternative overlay network path, avoid congestion point

Acts as overlay router

Berkeley
MIT

UCLA

9

Overview

� Resilient Overlay Network (RON)

� Overlay multicast

� Peer-to-peer systems

10

IP Multicast Problems

� Seventeen years of research, but still not widely deployed

� Poor scalability
- Routers need to maintain per-group or even per-group and per-

sender state!

- Multicast addresses cannot be aggregated

� Supporting higher level functionality is difficult
- IP Multicast: best-effort multi-point delivery service

- Reliability and congestion control for IP Multicast complicated

� No support for access control
- Nor restriction on who can send � easy to mount Denial of Service

(Dos) attacks!

11

Overlay Approach

� Provide IP multicast functionality above the IP layer �
application level multicast

� Challenge: do this efficiently
� Projects:

- Narada

- Overcast

- Scattercast

- Yoid

- …

12

Narada [Yang-hua et al, 2000]

� Source Speific Trees

� Involves only end hosts

� Small group sizes <= hundreds of nodes

� Typical application: chat

3

13

Narada: End System Multicast

Stanford

CMU

Stan1

Stan2

Berk2

Overlay Tree
Gatech

Berk1

Berkeley

Gatech
Stan1

Stan2

CMU

Berk1

Berk2

14

Properties

� Easier to deploy than IP Multicast
- Don’t have to modify every router on path

� Easier to implement reliability than IP Multicast
- Use hop-by-hop retransmissions

� But
- Consume more bandwidth than IP Multicast

- Typically has higher latency than IP Multicast

- Harder to scale

� Optimization: use IP Multicast where available

15

Overview

� Resilient Overlay Network (RON)

� Overlay multicast

� Peer-to-peer systems

16

How Did it Start?

� A killer application: Naptser
- Free music over the Internet

� Key idea: share the storage and bandwidth of
individual (home) users

Internet

17

Model

� Each user stores a subset of files

� Each user has access (can download) files from
all users in the system

18

Main Challenge

� Find where a particular file is stored
- Note: problem similar to finding a particular page in web

caching (see last lecture – what are the differences?)

A
B

C

D

E

F

E?

4

19

Other Challenges

� Scale: up to hundred of thousands or millions of
machines

� Dynamicity: machines can come and go any time

20

Napster

� Assume a centralized index system that maps
files (songs) to machines that are alive

� How to find a file (song)
- Query the index system � return a machine that stores

the required file

• Ideally this is the closest/least-loaded machine

- ftp the file

21

Napster: Example

A
B

C

D

E

F

m1
m2

m3

m4

m5

m6

m1 A
m2 B
m3 C
m4 D
m5 E
m6 F

E?
m5

E? E

22

Naptser: Discussion

� Advantages:
- Simplicity, easy to implement sophisticated search

engines on top of the index system

� Disadvantages:
- Robustness, scalability (?)

23

Gnutella

� Distribute file location

� Idea: flood the request

� How to find a file:
- Send request to all neighbors

- Neighbors recursively multicast the request

- Eventually a machine that has the file receives the request,
and it sends back the answer

24

Gnutella: Example

� Assume: m1’s neighbors are m2 and m3; m3’s
neighbors are m4 and m5;…

A
B

C

D

E

F

m1
m2

m3

m4

m5

m6

E?

E?

E?
E?

E

5

25

Gnutella: Discussion

� Advantages:
- Totally decentralized, highly robust

� Disadvantages:
- Not scalable; the entire network can be swamped with

request (to alleviate this problem, each request has a
TTL)

26

Other Solutions to the Location
Problem

� Use a distributed rather than a centralized directory
(like in the case of Napster)

� Distributed hash-table data (DHT) abstraction
- insert(id, item);

- item = query(id);

- Note: item can be anything: a data object, document, file,
pointer to a file…

� Proposals
- CAN, Chord, Kademlia, Pastry, Tapestry, etc

27

DHT Design Goals

� Make sure that an item (file) identified is always
found

� Scales to hundreds of thousands of nodes

� Handles rapid arrival and failure of nodes

28

� Distributed Hash Tables (DHTs)
� Hash table interface: put (key,item), get (key)
� O(log n) hops
� Guarantees on recall

Structured Networks

K I

K I

K I

K I

K I

K I

K I

K I

K I

put(K 1,I1)

(K1,I1)

get (K 1)

I1

29

Content Addressable Network
(CAN)

� Associate to each node and
item a unique id in an d-
dimensional Cartesian space
on a d-torus

� Properties
- Routing table size O(d)

- Guarantees that a file is found
in at most d*n1/d steps, where n
is the total number of nodes

30

CAN Example: Two Dimensional
Space

� Space divided between nodes
� All nodes cover the entire

space
� Each node covers either a

square or a rectangular area of
ratios 1:2 or 2:1

� Example:
- Node n1:(1, 2) first node that joins
� cover the entire space

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1

6

31

CAN Example: Two Dimensional
Space

� Node n2:(4, 2) joins � space is
divided between n1 and n2

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

32

CAN Example: Two Dimensional
Space

� Node n2:(4, 2) joins � space is
divided between n1 and n2

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3

33

CAN Example: Two Dimensional
Space

� Nodes n4:(5, 5) and n5:(6,6)
join

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

34

CAN Example: Two Dimensional
Space

� Nodes: n1:(1, 2); n2:(4,2);
n3:(3, 5); n4:(5,5);n5:(6,6)

� Items: f1:(2,3); f2:(5,1);
f3:(2,1); f4:(7,5);

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

35

CAN Example: Two Dimensional
Space

� Each item is stored by the node
who owns its mapping in the
space

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

36

CAN: Query Example

� Each node knows its neighbors
in the d-space

� Forward query to the neighbor
that is closest to the query id

� Example: assume n1 queries f4

� Can route around some failures

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

7

37

Chord

� Associate to each node and item a unique id in
an uni-dimensional space 0..2m-1

� Key design decision
- Decouple correctness from efficiency

� Properties
- Routing table size O(log(N)) , where N is the total

number of nodes

- Guarantees that a file is found in O(log(N)) steps

38

Identifier to Node Mapping Example

� Node 8 maps [5,8]

� Node 15 maps [9,15]

� Node 20 maps [16, 20]

� …

� Node 4 maps [59, 4]

� Each node maintains a
pointer to its successor

4

20

32
35

8

15

44

58

39

Lookup

� Each node maintains its
successor

� Route packet (ID, data) to
the node responsible for ID
using successor pointers

4

20

32
35

8

15

44

58

lookup(37)

node=44

40

Joining Operation

� Each node A periodically sends a stabilize() message to its
successor B

� Upon receiving a stabilize() message, node B
- returns its predecessor B’=pred(B) to A by sending a notify(B’)

message

� Upon receiving notify(B’) from B,
- if B’ is between A and B, A updates its successor to B’

- A doesn’t do anything, otherwise

41

Joining Operation

4

20

32
35

8

15

44

58

50

� Node with id=50 joins the
ring

� Node 50 needs to know at
least one node already in the
system
- Assume known node is 15

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

42

Joining Operation

4

20

32
35

8

15

44

58

50

� Node 50: send
join(50) to node 15

� Node 44: returns
node 58

� Node 50 updates its
successor to 58 join(50)

succ=58

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

58

8

43

Joining Operation

4

20

32
35

8

15

44

58

50

� Node 50: send
stabilize() to
node 58

� Node 58:
- update

predecessor
to 50

- send notify()
back

succ=58
pred=nil

succ=58
pred=35

stabilize()

no
tif

y(
pr

ed
=5

0)

pred=50
succ=4
pred=44

44

Joining Operation (cont’d)

4

20

32
35

8

15

44

58

50

� Node 44 sends a stabilize
message to its successor,
node 58

� Node 58 reply with a notify
message

� Node 44 updates its
successor to 50 succ=58

stabilize()no
tif

y(
pr

ed
=5

0)

succ=50

pred=50
succ=4

pred=nil

succ=58
pred=35

45

Joining Operation (cont’d)

4

20

32
35

8

15

44

58

50

� Node 44 sends a stabilize
message to its new
successor, node 50

� Node 50 sets its predecessor
to node 44

succ=58

succ=50

Stabilize()
pred=44

pred=50

pred=35

succ=4

pred=nil

46

Joining Operation (cont’d)

4

20

32
35

8

15

44

58

50

� This completes the joining
operation!

succ=58

succ=50

pred=44

pred=50

47

Achieving Efficiency: finger tables

80 + 20
80 + 21

80 + 22
80 + 23

80 + 24

80 + 25

(80 + 26) mod 2 7 = 16

0
Say m=7

ith entry at peer with id n is first peer with id >=)2(mod2 min +

i ft[i]
0 96
1 96
2 96
3 96
4 96
5 112
6 20

Finger Table at 80

32

4580

20
112

96

48

Achieving Robustness

� To improve robustness each node maintains the
k (> 1) immediate successors instead of only one
successor

� In the notify() message, node A can send its k-1
successors to its predecessor B

� Upon receiving notify() message, B can update
its successor list by concatenating the successor
list received from A with A itself

9

49

Discussion

� Query can be implemented
- Iteratively
- Recursively

� Performance: routing in the overlay network can be more
expensive than in the underlying network

- Because usually there is no correlation between node ids and
their locality; a query can repeatedly jump from Europe to North
America, though both the initiator and the node that store the item
are in Europe!

- Solutions: Tapestry takes care of this implicitly; CAN and Chord
maintain multiple copies for each entry in their routing tables and
choose the closest in terms of network distance

50

Conclusions

� The key challenge of building wide area P2P systems is a
scalable and robust directory service

� Solutions covered in this lecture
- Naptser: centralized location service

- Gnutella: broadcast-based decentralized location service

- CAN, Chord, Tapestry, Pastry: intelligent-routing decentralized
solution

• Guarantee correctness

• Tapestry, Pastry provide efficient routing, but more complex

