EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks

Ion Stoica Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 94720-1776

Goals

- Make it easy to deploy new functionalities in the network → accelerate the pace of innovation
- · Allow users to customize their service

Overlay Networks: Motivations

- · Changes in the network happen very slowly
- Why?
 - Internet network is a shared infrastructure; need to achieve consensus (IETF)
 - Many of proposals require to change a large number of routers (e.g., IP Multicast, QoS); otherwise end-users won't benefit
- Proposed changes that haven't happened yet on large scale:
 - More Addresses (IPv6 '91)
 - Security (IPSEC '93); Multicast (IP multicast '90)

Motivations (cont'd)

- One size does not fit all
- Applications need different levels of
 - Reliability
 - Performance (latency)Security
 - Access control (e.g., who is allowed to join a multicast
 - group)

- ...

Overview

- > Resilient Overlay Network (RON)
- Overlay Multicast
- Peer-to-peer systems

Resilient Overlay Network (RON)

- Premise: by building application overlay network, can increase performance and reliability of routing
- Install N computers at different Internet locations
- Each computer acts as an overlay network router
 Between each overlay router is an IP tunnel (logical link)
 Logical overlay topology is all-to-all (N^2)
- Computers actively measure each logical link in real time for
 Packet loss rate, latency, throughput, etc
- · Route overlay network traffic based on measured characteristics

IP Multicast Problems

- Seventeen years of research, but still not widely deployed
- Poor scalability
 - Routers need to maintain per-group or even per-group and persender state!
 - Multicast addresses cannot be aggregated
- Supporting higher level functionality is difficult
 - IP Multicast: best-effort multi-point delivery service
 - Reliability and congestion control for IP Multicast complicated
- No support for access control
 - Nor restriction on who can send → easy to mount Denial of Service (Dos) attacks!

Overview

- Resilient Overlay Network (RON)
- > Overlay multicast
- Peer-to-peer systems

Narada [Yang-hua et al, 2000]

- Source Speific Trees
- · Involves only end hosts
- Small group sizes <= hundreds of nodes
- Typical application: chat

12

Other Challenges

- Scale: up to hundred of thousands or millions of machines
- Dynamicity: machines can come and go any time

Naptser: Discussion Advantages: Simplicity, easy to implement sophisticated search engines on top of the index system

22

Disadvantages:
Robustness, scalability (?)

19

Gnutella: Discussion

Advantages:

- Totally decentralized, highly robust

- Disadvantages:
 - Not scalable; the entire network can be swamped with request (to alleviate this problem, each request has a TTL)

25

26

27

Other Solutions to the Location Problem • Use a distributed rather than a centralized directory (like in the case of Napster) • Distributed hash-table data (DHT) abstraction insert(id, item); item = query(id); Note: item can be anything: a data object, document, file, pointer to a file... • Proposals CAN, Chord, Kademlia, Pastry, Tapestry, etc

DHT Design Goals

- Make sure that an item (file) identified is always found
- Scales to hundreds of thousands of nodes
- Handles rapid arrival and failure of nodes

Discussion

- Query can be implemented
 - IterativelyRecursively
 - Recursively
- Performance: routing in the overlay network can be more expensive than in the underlying network
 - Because usually there is no correlation between node ids and their locality; a query can repeatedly jump from Europe to North America, though both the initiator and the node that store the item are in Europe!
 - Solutions: Tapestry takes care of this implicitly; CAN and Chord maintain multiple copies for each entry in their routing tables and choose the closest in terms of network distance

Conclusions

- The key challenge of building wide area P2P systems is a scalable and robust directory service
- Solutions covered in this lecture
 - Naptser: centralized location service
 - Gnutella: broadcast-based decentralized location service
 - CAN, Chord, Tapestry, Pastry: intelligent-routing decentralized solution
 - Guarantee correctness
 - Tapestry, Pastry provide efficient routing, but more complex

50

49