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Overlay Networks: Motivations

� Changes in the network happen very slowly

� Why?
- Internet network is a shared infrastructure; need to achieve 

consensus (IETF)

- Many of proposals require to change a large number of 
routers (e.g., IP Multicast, QoS); otherwise end-users won’t 
benefit 

� Proposed changes that haven’t happened yet on large 
scale:

- More Addresses (IPv6 ‘91)

- Security (IPSEC ‘93); Multicast (IP multicast ‘90)
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Motivations (cont’d)

� One size does not fit all

� Applications need different levels of
- Reliability

- Performance (latency)

- Security 

- Access control (e.g., who is allowed to join a multicast 
group)

- …
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Goals

� Make it easy to deploy new functionalities in the 
network � accelerate the pace of innovation 

� Allow users to customize their service
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Solution

� Deploy processing in the network
� Have packets processed as they traverse the 

network

AS-1
IP

AS-1
Overlay Network
(over IP)
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Overview

� Resilient Overlay Network (RON)

� Overlay Multicast

� Peer-to-peer systems
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Resilient Overlay Network (RON)

� Premise: by building application overlay network, can increase 
performance and reliability of routing 

� Install N computers at different Internet locations

� Each computer acts as an overlay network router
- Between each overlay router is an IP tunnel (logical link)

- Logical overlay topology is all-to-all (N^2)

� Computers actively measure each logical link in real time for
- Packet loss rate, latency, throughput, etc

� Route overlay network traffic based on measured characteristics
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Example

Default IP path determined by BGP & OSPF

Reroute traffic using red alternative overlay network path, avoid congestion point

Acts as overlay router

Berkeley
MIT

UCLA
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Overview

� Resilient Overlay Network (RON)

� Overlay multicast

� Peer-to-peer systems
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IP Multicast Problems

� Seventeen years of research, but still not widely deployed

� Poor scalability
- Routers need to maintain per-group or even per-group and per-

sender state!

- Multicast addresses cannot be aggregated

� Supporting higher level functionality is difficult
- IP Multicast: best-effort multi-point delivery service

- Reliability and congestion control for IP Multicast complicated

� No support for access control
- Nor restriction on who can send � easy to mount Denial of Service 

(Dos) attacks! 
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Overlay Approach

� Provide IP multicast functionality above the IP layer �
application level multicast

� Challenge: do this efficiently
� Projects:

- Narada

- Overcast

- Scattercast

- Yoid

- …
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Narada [Yang-hua et al, 2000]

� Source Speific Trees

� Involves only end hosts

� Small group sizes <= hundreds of nodes

� Typical application: chat
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Narada: End System Multicast

Stanford

CMU

Stan1

Stan2

Berk2

Overlay  Tree
Gatech

Berk1

Berkeley

Gatech
Stan1

Stan2

CMU

Berk1

Berk2
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Properties

� Easier to deploy than IP Multicast
- Don’t have to modify every router on path

� Easier to implement reliability than IP Multicast
- Use hop-by-hop retransmissions

� But
- Consume more bandwidth than IP Multicast

- Typically has higher latency than IP Multicast

- Harder to scale

� Optimization: use IP Multicast where available 
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Overview

� Resilient Overlay Network (RON)

� Overlay multicast

� Peer-to-peer systems
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How Did it Start?

� A killer application: Naptser
- Free music over the Internet

� Key idea: share the storage and bandwidth of 
individual (home) users

Internet
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Model

� Each user stores a subset of files

� Each user has access (can download) files from 
all users in the system
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Main Challenge

� Find where a particular file is stored
- Note: problem similar to finding a particular page in web 

caching (see last lecture – what are the differences?)

A
B

C

D

E

F

E?
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Other Challenges

� Scale: up to hundred of thousands or millions of 
machines 

� Dynamicity: machines can come and go any time
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Napster

� Assume a centralized index system that maps 
files (songs) to machines that are alive

� How to find a file (song)
- Query the index system � return a machine that stores 

the required file

• Ideally this is the closest/least-loaded machine

- ftp the file
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Napster: Example

A
B
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D

E

F

m1
m2

m3

m4

m5

m6

m1  A
m2  B
m3  C
m4  D
m5  E
m6  F

E?
m5

E? E
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Naptser: Discussion

� Advantages: 
- Simplicity, easy to implement sophisticated search 

engines on top of the index system

� Disadvantages:
- Robustness, scalability (?)
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Gnutella

� Distribute file location

� Idea: flood the request

� How to find a file:
- Send request to all neighbors

- Neighbors recursively multicast the request

- Eventually a machine that has the file receives the request, 
and it sends back the answer
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Gnutella: Example

� Assume: m1’s neighbors are m2 and m3; m3’s 
neighbors are m4 and m5;…
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Gnutella: Discussion

� Advantages:
- Totally decentralized, highly robust

� Disadvantages:
- Not scalable; the entire network can be swamped with 

request (to alleviate this problem, each request has a 
TTL)  
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Other Solutions to the Location 
Problem

� Use a distributed rather than a centralized directory 
(like in the case of Napster) 

� Distributed hash-table data (DHT) abstraction 
- insert(id, item);

- item = query(id);

- Note: item can be anything: a data object, document, file, 
pointer to a file…

� Proposals
- CAN, Chord, Kademlia, Pastry, Tapestry, etc
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DHT Design Goals

� Make sure that an item (file) identified is always 
found

� Scales to hundreds of thousands of nodes

� Handles rapid arrival and failure of nodes
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� Distributed Hash Tables (DHTs)
� Hash table interface: put (key,item), get (key)
� O(log n) hops 
� Guarantees on recall

Structured Networks

K  I

K  I

K  I

K  I

K  I

K  I

K  I

K  I

K  I

put(K 1,I1)

(K1,I1)

get (K 1)

I1
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Content Addressable Network 
(CAN)

� Associate to each node and 
item a unique id in an d-
dimensional Cartesian space 
on a d-torus

� Properties 
- Routing table size O(d)

- Guarantees that a file is found 
in at most d*n1/d steps, where n
is the total number of nodes
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CAN Example: Two Dimensional 
Space

� Space divided between nodes
� All nodes cover the entire 

space
� Each node covers either a 

square or a rectangular area of 
ratios 1:2 or 2:1

� Example: 
- Node n1:(1, 2) first node that joins 
� cover the entire space

1 2 3 4 5 6 70

1

2
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4

5

6

7

0

n1
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CAN Example: Two Dimensional 
Space

� Node n2:(4, 2) joins � space is 
divided between n1 and n2

1 2 3 4 5 6 70
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n1 n2
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CAN Example: Two Dimensional 
Space

� Node n2:(4, 2) joins � space is 
divided between n1 and n2
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CAN Example: Two Dimensional 
Space

� Nodes n4:(5, 5) and n5:(6,6) 
join
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CAN Example: Two Dimensional 
Space

� Nodes: n1:(1, 2); n2:(4,2); 
n3:(3, 5); n4:(5,5);n5:(6,6)

� Items: f1:(2,3); f2:(5,1); 
f3:(2,1); f4:(7,5);
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CAN Example: Two Dimensional 
Space

� Each item is stored by the node 
who owns its mapping in the 
space 
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CAN: Query Example

� Each node knows its neighbors 
in the d-space

� Forward query to the neighbor 
that is closest to the query id

� Example: assume n1 queries f4

� Can route around some failures
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Chord

� Associate to each node and item a unique id in 
an uni-dimensional space 0..2m-1

� Key design decision
- Decouple correctness from efficiency

� Properties 
- Routing table size O(log(N)) , where N is the total 

number of nodes

- Guarantees that a file is found in O(log(N)) steps
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Identifier to Node Mapping Example

� Node  8 maps [5,8]

� Node 15 maps [9,15]

� Node 20 maps [16, 20]

� …

� Node 4 maps [59, 4]

� Each node maintains a 
pointer to its successor

4

20

32
35

8

15

44

58
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Lookup

� Each node maintains its 
successor 

� Route packet (ID, data) to 
the node responsible for ID 
using successor pointers

4

20

32
35

8

15

44

58

lookup(37)

node=44
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Joining Operation

� Each node A periodically sends a stabilize() message to its 
successor B

� Upon receiving a stabilize() message, node B 
- returns its predecessor B’=pred(B) to A by sending a notify(B’)

message

� Upon receiving notify(B’) from B, 
- if B’ is between A and B, A updates its successor to B’

- A doesn’t do anything, otherwise 
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Joining Operation

4

20

32
35

8
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44

58

50

� Node with id=50 joins the 
ring

� Node 50 needs to know at 
least one node already in the 
system
- Assume known node is 15

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35
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Joining Operation

4

20

32
35

8

15

44

58

50

� Node 50: send 
join(50) to node 15 

� Node 44: returns 
node 58 

� Node 50 updates its 
successor to 58 join(50)

succ=58

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

58
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Joining Operation

4
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32
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44
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� Node 50: send 
stabilize() to 
node 58

� Node 58: 
- update 

predecessor 
to 50 

- send notify() 
back 

succ=58
pred=nil

succ=58
pred=35

stabilize()

no
tif

y(
pr

ed
=5

0)

pred=50
succ=4
pred=44
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Joining Operation (cont’d)
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� Node 44 sends a stabilize 
message to its successor, 
node 58

� Node 58 reply with a notify 
message

� Node 44 updates its 
successor to 50 succ=58

stabilize()no
tif

y(
pr

ed
=5

0)

succ=50

pred=50
succ=4

pred=nil

succ=58
pred=35
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Joining Operation (cont’d)
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� Node 44 sends a stabilize 
message to its new 
successor, node 50

� Node 50 sets its predecessor 
to node 44

succ=58

succ=50

Stabilize()
pred=44

pred=50

pred=35

succ=4

pred=nil
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Joining Operation (cont’d)
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� This completes the joining 
operation!

succ=58

succ=50

pred=44

pred=50
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Achieving Efficiency: finger tables

80 + 20
80 + 21

80 + 22
80 + 23

80 + 24

80 + 25

(80 + 26) mod 2 7 = 16

0
Say m=7

ith entry at peer with id n is first peer with id >=                          )2(mod2 min +

i   ft[i]
0  96
1  96
2  96
3  96
4  96
5  112
6  20

Finger Table at 80

32

4580

20
112

96
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Achieving Robustness

� To improve robustness each node maintains the 
k (> 1) immediate successors instead of only one 
successor

� In the notify() message, node A can send its k-1 
successors to its predecessor B

� Upon receiving notify() message, B can update 
its successor list by concatenating the successor 
list received from A with A itself 
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Discussion

� Query can be implemented
- Iteratively
- Recursively

� Performance: routing in the overlay network can be more 
expensive than in the underlying network 

- Because usually there is no correlation between node ids and 
their locality; a query can repeatedly jump from Europe to North
America, though both the initiator and the node that store the item 
are in Europe!

- Solutions: Tapestry takes care of this implicitly; CAN and Chord
maintain multiple copies for each entry in their routing tables and  
choose the closest in terms of network distance
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Conclusions

� The key challenge of building wide area P2P systems is a 
scalable and robust directory service

� Solutions covered in this lecture
- Naptser: centralized location service

- Gnutella: broadcast-based decentralized location service

- CAN, Chord, Tapestry, Pastry: intelligent-routing decentralized 
solution 

• Guarantee correctness

• Tapestry, Pastry provide efficient routing, but more complex 


