EECS 122:

Introduction to Computer Networks
Overlay Networks and P2P Networks

lon Stoica
Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720-1776

Goals

= Make it easy to deploy new functionalities in the
network - accelerate the pace of innovation

= Allow users to customize their service

Overlay Networks: Motivations

= Changes in the network happen very slowly

= Why?
- Internet network is a shared infrastructure; need to achieve
consensus (IETF)

- Many of proposals require to change a large number of
routers (e.g., IP Multicast, QoS); otherwise end-users won't
benefit

= Proposed changes that haven't happened yet on large
scale:
- More Addresses (IPv6 ‘91)
- Security (IPSEC ‘93); Multicast (IP multicast ‘90)

Solution

= Deploy processing in the network

= Have packets processed as they traverse the
network

Overlay Network
(over IP)

Motivations (cont’d)

= One size does not fit all

= Applications need different levels of
- Reliability
- Performance (latency)
- Security
- Access control (e.g., who is allowed to join a multicast
group)

Overview

> Resilient Overlay Network (RON)

= Overlay Multicast

- Peer-to-peer systems

Resilient Overlay Network (RON)

Premise: by building application overlay network, can increase
performance and reliability of routing

Install N computers at different Internet locations

Each computer acts as an overlay network router
- Between each overlay router is an IP tunnel (logical link)
- Logical overlay topology is all-to-all (N*2)
Computers actively measure each logical link in real time for
- Packet loss rate, latency, throughput, etc
Route overlay network traffic based on measured characteristics

IP Multicast Problems

Seventeen years of research, but still not widely deployed

Poor scalability

- Routers need to maintain per-group or even per-group and per-
sender state!

- Multicast addresses cannot be aggregated
Supporting higher level functionality is difficult

- IP Multicast: best-effort multi-point delivery service

- Reliability and congestion control for IP Multicast complicated
No support for access control

- Nor restriction on who can send - easy to mount Denial of Service
(Dos) attacks!

Example
MIT
Berkeley 3
3 w== Default IP path determined by BGP & OSPF —e

Reroute traffic using red alternative overlay network path, avoid congestion point

Acts as overlay router

8

Overlay Approach

= Provide IP multicast functionality above the IP layer >
application level multicast

= Challenge: do this efficiently
= Projects:

- Narada

- Overcast

- Scattercast

- Yoid

Overview

= Resilient Overlay Network (RON)
> Overlay multicast

- Peer-to-peer systems

Narada [Yang-hua et al, 2000]

= Source Speific Trees
= Involves only end hosts
= Small group sizes <= hundreds of nodes

= Typical application: chat

Narada: End System Multicast

CMU

=L [—
Gatech
Stan2
cMuU Berkl
T, Bek2

How Did it Start?

= A Kkiller application: Naptser
- Free music over the Internet

= Key idea: share the storage and bandwidth of
individual (home) users

Properties

= Easier to deploy than IP Multicast
- Don't have to modify every router on path

= Easier to implement reliability than IP Multicast
- Use hop-by-hop retransmissions

= But
- Consume more bandwidth than IP Multicast
- Typically has higher latency than IP Multicast
- Harder to scale

= Optimization: use IP Multicast where available

Model

= Each user stores a subset of files

= Each user has access (can download) files from
all users in the system

Overview

= Resilient Overlay Network (RON)

= Overlay multicast

> Peer-to-peer systems

Main Challenge

= Find where a particular file is stored

- Note: problem similar to finding a particular page in web
caching (see last lecture — what are the differences?)

e

o

Other Challenges

= Scale: up to hundred of thousands or millions of
machines

= Dynamicity: machines can come and go any time

Naptser: Discussion

= Advantages:

- Simplicity, easy to implement sophisticated search
engines on top of the index system

= Disadvantages:
- Robustness, scalability (?)

Napster

= Assume a centralized index system that maps
files (songs) to machines that are alive

= How to find a file (song)

- Query the index system - return a machine that stores
the required file

« Ideally this is the closest/least-loaded machine
- ftp the file

Gnutella

= Distribute file location

= Idea: flood the request

= How to find a file:
- Send request to all neighbors
- Neighbors recursively multicast the request

- Eventually a machine that has the file receives the request,
and it sends back the answer

Napster: Example

De

5
[m1al]

Gnutella: Example

= Assume: m1l's neighbors are m2 and m3; m3's
neighbors are m4 and m5;...

Gnutella: Discussion

= Advantages:
- Totally decentralized, highly robust

= Disadvantages:

- Not scalable; the entire network can be swamped with
request (to alleviate this problem, each request has a
TTL)

Structured Networks

= Distributed Hash Tables (DHTs)

= Hash table interface: put (key,item), get(key)
= O(log n) hops

= Guarantees on recall

Other Solutions to the Location
Problem

= Use a distributed rather than a centralized directory
(like in the case of Napster)

= Distributed hash-table data (DHT) abstraction
- insert(id, item);
- item = query(id);

- Note: item can be anything: a data object, document, file,
pointer to a file...

= Proposals
- CAN, Chord, Kademlia, Pastry, Tapestry, etc

Content Addressable Network
(CAN)

= Associate to each node and
item a unique id in an d-
dimensional Cartesian space
on a d-torus

= Properties
- Routing table size O(d)

- Guarantees that a file is found
in at most d*n%d steps, where n
is the total number of nodes

2-torus

DHT Design Goals

= Make sure that an item (file) identified is always
found

= Scales to hundreds of thousands of nodes

= Handles rapid arrival and failure of nodes

CAN Example: Two Dimensional
Space

Space divided between nodes

All nodes cover the entire 7

space

Each node covers either a
square or a rectangular area of s

ratios 1:2 or 2:1

Example:
- Node nl:(1, 2) first node that joins

- cover the entire space 2 "

CAN Example: Two Dimensional
Space

= Node n2:(4, 2) joins > space is

divided between nl1 and n2

nd

=

CAN Example: Two Dimensional
Space

= Nodes: nl:(1, 2); n2:(4,2);

CAN Example: Two Dimensional
Space

= Node n2:(4, 2) joins > space is

divided between nl1 and n2

5 K

iy 12

CAN Example: Two Dimensional
Space

= Nodes n4:(5, 5) and n5:(6,6)

join

5 K

n§

=

n3:(3, 5); n4:(5,5);n5:(6,6) B
6 n5.
= Items: f1:(2,3); f2:(5,1); g n e
3:(2,1); f4:(7,5); °
4
3 "o
nJ. n2
2 B
. fao
0 or?
0 1 2 3 4 5 6
34
CAN Example: Two Dimensional
Space
= Each item is stored by the node
who owns its mapping in the
space .
6 n5
5 n3 ng e
4
3 "o
, [112
. if:%o |
0 ol
0 1 2 3 4 5 6 7
35
CAN: Query Example
= Each node knows its neighbors
in the d-space ,
6 51
= Forward query to the neighbor 5 3| % e
that is closest to the query id < lf
4
. NS /
= Example: assume nl queries f4 g -
2 [Qe
f3O
= Can route around some failures 1! :
0 iof?
0 1 2 3 4 5 6 7

Chord

= Associate to each node and item a unique id in
an uni-dimensional space 0..2™-1

= Key design decision
- Decouple correctness from efficiency

= Properties

- Routing table size O(log(N)) , where N is the total
number of nodes

- Guarantees that a file is found in O(log(N)) steps

Identifier to Node Mapping Example

. 5

Node 8 maps [5,8] E -
Node 15 maps [9,15] A
Node 20 maps [16, 20]

Node 4 maps [59, 4]

Each node maintains a
pointer to its successor

Each node maintains its
successor

ﬁ lookup(37)
B

Route packet (ID, data) to
the node responsible for ID
using successor pointers

39

Joining Operation

= Each node A periodically sends a stabilize() message to its
successor B

= Upon receiving a stabilize() message, node B

- returns its predecessor B'=pred(B) to A by sending a notify(B’)
message

= Upon receiving notify(B’) from B,
- if B'is between A and B, A updates its successor to B’
- A doesn't do anything, otherwise

Joining Operation

o o !
Node with id=50 joins the ‘S’:J:;:ME
ring

Node 50 needs to know at
least one node already in the
system

- Assume known node is 15
succ=nil ﬁ
pred=nil

50

succ=58 [I=
pred=35lll

Joining Operation

Node 50: send N = |
join(50) to node 15 pred=

Node 44: returns

node 58

Node 50 updates its

successor to 58
succ=hi E
pred=nil .

succ=58 [[=
pred=35

Joining Operation

Node 50: send = Eﬂ
stabilize() to
node 58
Node 58:
update
predecessor
to 50 ~
succ=58

send notify() pred=nil
back

succ=58 [[=
pred=35

Joining Operation (cont’d)

This completes the joining
operation!

pred:5OE

succ=58 E
pred=44

succ=50 E

Joining Operation (cont’d)

Scc=A =
Node 44 sends a stabilize pred=50 g= ﬁ
message to its successor, E
node 58

Node 58 reply with a notify f\

message

Node 44 updates its

SUCCeSSOr t0 50 suce=ss E
pred=nil

S
K
QL
S
s stabilize()

50

succ=58 [I=
pred=35lll

Achieving Efficiency: finger tables

Finger Table at 80 0 Saym=7

i ftfi] (80 +26) mod 27 = 16
09 80 + 25

1 96

2 96

396 | 80 + 24 E

4 96 80+23

5 112 50+21

6 20 R

ith entry at peer with id n isfirst peer withid >= n+2'(mod Zm)‘

a7

Joining Operation (cont’d)

S =
Node 44 sends a stabilize pred=50 g Eﬂ
message to its new E
successor, node 50

Node 50 sets its predecessor

to node 44
succ=58 =
[pred=il El‘

50

suce=50 =
pred=35

Stabilize()

Achieving Robustness

= To improve robustness each node maintains the
k (> 1) immediate successors instead of only one
successor

= In the notify() message, node A can send its k-1
successors to its predecessor B

= Upon receiving notify() message, B can update
its successor list by concatenating the successor
list received from A with A itself

Discussion

= Query can be implemented
- lteratively
- Recursively

= Performance: routing in the overlay network can be more
expensive than in the underlying network

- Because usually there is no correlation between node ids and
their locality; a query can repeatedly jump from Europe to North
America, though both the initiator and the node that store the item
are in Europe!

- Solutions: Tapestry takes care of this implicitly; CAN and Chord
maintain multiple copies for each entry in their routing tables and
choose the closest in terms of network distance

Conclusions

= The key challenge of building wide area P2P systems is a
scalable and robust directory service

= Solutions covered in this lecture
- Naptser: centralized location service
- Gnutella: broadcast-based decentralized location service

- CAN, Chord, Tapestry, Pastry: intelligent-routing decentralized
solution

« Guarantee correctness
« Tapestry, Pastry provide efficient routing, but more complex

