
1

1

EE 122: Advanced TCP

Ion Stoica (and Brighten Godfrey)

TAs: Lucian Popa, David Zats and Ganesh

Ananthanarayanan

http://inst.eecs.berkeley.edu/~ee122/

(Materials with thanks to Vern Paxson, Jennifer Rexford,

and colleagues at UC Berkeley)
2

Goals of Today’s Lecture

� Understanding AIMD/AIAD/MIAD/MIMD

dynamics

� Improved TCP algorithms

� TCP Throughput Computation

3

AIMD Sharing Dynamics

A Bx1

D E

0

10

20

30

40

50

60

1

2
8

5
5

8
2

1
0
9

1
3
6

1
6
3

1
9
0

2
1
7

2
4
4

2
7
1

2
9
8

3
2
5

3
5
2

3
7
9

4
0
6

4
3
3

4
6
0

4
8
7

� No congestion � rate increases by one packet/RTT every RTT

� Congestion � decrease rate by factor 2

Rates equalize � fair share

x2

4

AIAD Sharing Dynamics

A B
x1

D E
� No congestion � x increases by one packet/RTT every RTT

� Congestion � decrease x by 1

0

10

20

30

40

50

60

1

2
8

5
5

8
2

1
0
9

1
3
6

1
6
3

1
9
0

2
1
7

2
4
4

2
7
1

2
9
8

3
2
5

3
5
2

3
7
9

4
0
6

4
3
3

4
6
0

4
8
7

x2

5

Efficient Allocation: Challenges of

Congestion Control

� Too slow
� Fail to take advantage of

available bandwidth →
underload

� Too fast
� Overshoot knee → overload,

high delay, loss

� Everyone’s doing it
� May all under/over shoot →

large oscillations

� Optimal:

� Σxi=Xgoal
� Efficiency = 1 - distance

from efficiency line

User 1: x1

U
se

r
2
:
x

2

Efficiency

line

2 user example

overload

underload

6

Example

User 1: x1

U
se

r
2
:
x

2

fairness

line

efficiency

line

1

1

� Total bandwidth 1

Inefficient: x1+x2=0.7

(0.2, 0.5)

Congested: x1+x2=1.2

(0.7, 0.5)

Efficient: x1+x2=1

Not fair

(0.7, 0.3)

Efficient: x1+x2=1

Fair

(0.5, 0.5)

2

7

MIAD

User 1: x1

U
se

r
2
:
x

2

fairness

line

efficiency

line

(x1h,x2h)

(x1h-aD,x2h-aD)

(bI(x1h-aD), bI(x2h-aD))� Increase: x*bI

� Decrease: x - aD

� Does not converge

to fairness

� Does not converges

to efficiency

8

AIAD

User 1: x1

U
se

r
2
:
x

2

fairness

line

efficiency

line

(x1h,x2h)

(x1h-aD,x2h-aD)

(x1h-aD+aI),

x2h-aD+aI))� Increase: x + aI

� Decrease: x - aD

� Does not

converge to

fairness

� Does not

converge to

efficiency

9

MIMD

User 1: x1

U
se

r
2
:
x

2

fairness

line

efficiency

line

(x1h,x2h)

(bdx1h,bdx2h)

(bIbDx1h,

bIbDx2h)

� Increase: x*bI

� Decrease: x*bD

� Does not

converge to

fairness

� Converges to

efficiency iff

10

1

<≤
≥

D

I

b

b

10

(bDx1h+aI,

bDx2h+aI)

AIMD

User 1: x1

U
se

r
2
:
x

2

fairness

line

efficiency

line

(x1h,x2h)

(bDx1h,bDx2h)

� Increase: x+aD

� Decrease: x*bD

� Converges to fairness

� Converges to

efficiency

� Increments smaller

as fairness increases

11

Implementing AIMD

� After each ACK

� Increment cwnd by 1/cwnd (cwnd += 1/cwnd)

� As a result, cwnd is increased by one only if all

segments in a cwnd have been acknowledged

� But need to decide when to leave slow-start and

enter AIMD

� Use ssthresh variable

12

Slow Start/AIMD Pseudocode

Initially:

cwnd = 1;

ssthresh = infinite;

New ack received:

if (cwnd < ssthresh)

/* Slow Start*/

cwnd = cwnd + 1;

else

/* Congestion Avoidance */

cwnd = cwnd + 1/cwnd;

Timeout:

/* Multiplicative decrease */

ssthresh = cwnd/2;

cwnd = 1;

3

13

The big picture (with timeouts)

Time

cwnd

Timeout

Slow

Start

AIMD

ssthresh

Timeout

Slow

Start

Slow

Start

AIMD

14

5 Minute Break

Questions Before We Proceed?

15

Congestion Detection Revisited

� Wait for Retransmission Time Out (RTO)

� RTO kills throughput

� In BSD TCP implementations, RTO is usually

more than 500ms

� The granularity of RTT estimate is 500 ms

� Retransmission timeout is RTT + 4 * mean_deviation

� Solution: Don’t wait for RTO to expire

16

Fast Retransmits

� Resend a segment
after 3 duplicate ACKs
� Duplicate ACK means

that an out-of sequence
segment was received

� Notes:
� ACKs are for next

expected packet

� Packet reordering can
cause duplicate ACKs

� Window may be too
small to get enough
duplicate ACKs

ACK 2

segment 1cwnd = 1

cwnd = 2 segment 2

segment 3

ACK 4

cwnd = 4 segment 4

segment 5

segment 6

segment 7

ACK 3

3 duplicate

ACKs

ACK 4

ACK 4

ACK 4

17

Fast Recovery:

After a Fast Retransmit

� ssthresh = cwnd / 2

� cwnd = ssthresh
� Instead of setting cwnd to 1, cut cwnd in half

(multiplicative decrease)

� For each dup ack arrival
� dupack++

� Indicates packet left network, so we may be able to
send more

� MaxWindow = min(cwnd + dupack, AdvWin)

� Receive ack for new data (beyond initial dup
ack)
� dupack = 0

� Exit fast recovery

� But when RTO expires still do cwnd = 1

18

Fast Retransmit and Fast

Recovery

� Retransmit after 3 duplicated acks

� Prevent expensive timeouts

� Reduce slow starts

� At steady state, cwnd oscillates around

the optimal window size

Time

cwnd

Slow Start

AI/MD

Fast retransmit

4

19

TCP Congestion Control

Summary

� Measure available bandwidth
� Slow start: fast, hard on network

� AIMD: slow, gentle on network

� Detecting congestion
� Timeout based on RTT

� Robust, causes low throughput

� Fast Retransmit: avoids timeouts when few packets lost
� Can be fooled, maintains high throughput

� Recovering from loss
� Fast recovery: don’t set cwnd=1 with fast retransmits

20

TCP Flavors

� TCP-Tahoe

� cwnd =1 whenever drop is detected

� TCP-Reno

� cwnd =1 on timeout

� cwnd = cwnd/2 on dupack

� TCP-newReno

� TCP-Reno + improved fast recovery

� TCP-SACK

21

TCP-SACK

� SACK = Selective Acknowledgements

� ACK packets identify exactly which packets have

arrived

� Makes recovery from multiple losses much

easier

22

Standards?

� How can all these algorithms coexist?

� Don’t we need a single, uniform standard?

� What happens if I’m using Reno and you are

using Tahoe, and we try to communicate?

23

TCP Throughput

� Assume a drop every k’th RTT (for some large k)

� w, w+1, w+2, ...w+k-1 DROP (w+k-1)/2, (w+k-1)/2+1,...

w

w+1
w+2

w+k-1

(w+k-1)/2

w
in

d
o

w

TimeRTT
24

TCP Throughput (cont’d)

� In steady state: w= (w+k-1)/2 � w=k-1

� Average window: (w + w + k -1)/2 = 3*w/2

� Total packets between drops: n = w+(w+1)+… +2*w = 3*w*(w+1)/2

� Drop probability: p = 1/n = 2/(3*w*(w+1)) ~= 2/(3*w2)

w

w+1
w+2

w+k-1

(w+k-1)/2

w
in

d
o

w

TimeRTT

5

25

TCP Throughput (cont’d)

� Throughput = average_window/RTT = (3*w/2)/RTT

� Drop probability: p ~= 2/(3*w2) � w = sqrt(2/3p)

� Throughput ~= (1/RTT)*sqrt(3/2p)

w

w+1
w+2

2*w

(w+k-1)/2

w
in

d
o

w

TimeRTT
26

Equation-Based CC

� Idea:

� Forget complicated increase/decrease algorithms

� Use this equation T(p) directly!

� Approach:

� Measure drop rate (don’t need ACKs for this)

� Send drop rate p to source

� Source sends at rate T(p)

� Good for streaming audio/video that can’t

tolerate the high variability of TCP’s sending rate

27

Cheating

� Three main ways to cheat:

� Increasing cwnd faster than 1 per RTT

� Using large initial cwnd

� Opening many connections

28

Increasing cwnd Faster

A B
x

D E
y

Limit rates:
x = 2y

C

x

y

x increases by 2 per RTT
y increases by 1 per RTT

29

Increasing cwnd Faster

A B
x

D E
y

0

10

20

30

40

50

60

1

2
8

5
5

8
2

1
0
9

1
3
6

1
6
3

1
9
0

2
1
7

2
4
4

2
7
1

2
9
8

3
2
5

3
5
2

3
7
9

4
0
6

4
3
3

4
6
0

4
8
7

30

Larger Initial cwnd

A B
x

D E
y

x starts SS with cwnd = 4
y starts SS with cwnd = 1

6

31

Open Many Connections

A B
x

D E
y

Assume

• A starts 10 connections to B

• D starts 1 connection to E

• Each connection gets about the same throughput

Then A gets 10 times more throughput than D

32

Lossy Links

� TCP assumes that all losses are due to

congestion

� What happens when the link is lossy?

� Recall that Tput ~ 1/sqrt(p) where p is loss prob.

� This applies even for non-congestion losses

33

Example

0

10

20

30

40

50

60

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451 476

p = 0

p = 1%

p = 10%

34

Summary

� Congestion control critical for avoiding collapse

� AIMD: Additive Increase, Multiplicative Decrease

� Congestion detected via packet loss (fail-safe)

� Slow start to find initial sending rate & to restart after

timeout

� Spectrum of TCP mechanisms to improve TCP

performance

� Fast Retransmit (avoid RTO stall)

� Fast Recovery (full AIMD)

