DIGITAL SIGNAL PROCESSING

Overview of Effects of Finite Register Length in DSP
1) Quantizatmn in A/D
2) Coefficient inaccuracy
3) Arithmetic “roundoff”
a) “Roundoff noise™
b) Adder overflow

¢) Zero-input limit cycles

1) Quantization in A/D

The A/D employs a quantizer to round off the value of x,, to fit into the available register
length. The rounding operation creates an error e, that propagates to the output of the DSP
system. As an example of this, consider an A/D followed by a digital filter:
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A/D X+ due to £,

The quantizer Q is a nonlinearity. We will model it by the additive error source €, = Q[xn] - Xy

Assume a fixed-point binary arithmetic representation with B bits plus sign. Also assume Ix,(t)]
< 1 so that x;, is a fraction. An exact binary representation of X, would generally require an
infinite number of bits:
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where each bit is a zero or a one. The quantizer Q rounds or truncates this representation to B
bits plus sign:
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Suppose Q[*] rounds to B bits plus sign. Then
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Assuming €, is a random variable, uniformly distributed on its range, the mean-squared value of
€,18
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Here, E denotes the mean or probabilistic “average” and the above formula is computed as
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where -2*%3- is the uniform probability density function.

Assuming that {en} is an uncorrelated, identically distributed sequence of random variables, we
can show that the output error of the digital filter is described by
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Example

Given the digital filter below, with A/D quantization noise at its input, find the resulting mean-
squared error at the filter output.
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Solution
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So, the filter increases the mean-squared value of the A/D quantization noise by a factor of about
eight,

2) Coefficient Inaccuracy
Can be treated deterministically. Suppose the desired infinite-precision frequency response is
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Then the actual frequency response after quantization of the filter coefficients will be
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where gi = Qla].

The result of coefficient inaccuracy is a deterministic degradation in the frequency response:
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A sensitivity analysis can be helpful in determining, for a given filter structure, how badly the
frequency response will be perturbed by a small change in the filter coefficients. Study:
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3a) Multiplication Roundoff Noise

Consider the filter structure
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where the register lengths are indicated at various points in the filter structure. Note that the
multiplier outputs have length 2B + 1 and these must be quantized back to B + 1 bits before they
enter a feedback loop. Otherwise, the required register length will grow without bound.

Here we assume a double-length accumulator, in which case a single quantization occurs after
the accumulator. Alternatively, we could quantize at each multiplier output, individually.

For a typical x,,, we can treat the error {g,} at the internal quantizer as additive, uncorrelated

noise with
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General conceptual setting:
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due to g,

Let F(z) be the transfer function from the error source (quantizer) to yp. Then for fixed-point
rounding

Y
-2B
i 2 N S 2
{MSE -e{¢} =5 % Jchd(Ml dx

For the above second-order section:
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F(z) = N
In general, F(z) # H(z).

There may be several quantization points in a filter. We generally can assume all error sources
are uncorrelated so that the mean-squared error at the output is the sum of the individual output
mean-squared errors.
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3b) Adder Overflow

Without loss of generality assume all quantities are stored as
+
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Even if the input satisfies |x,| < 1 for all n, we may have |adder output| > 1. If this happens, we
will have overflow (large error) at the adder output.

Solution: Scale down adder inputs by S to prevent overflow.

Picture:

In practice, the scaling operation does not necessitate additional multiplications. S may be a

power of 2, or alternatively, g can be incorporated into the a; and you may not care whether the
output is renormatized by S.

We want |p,| < 1. How do we choose S?

Let G(z) be the transfer function from x,, to the adder output prior to scaling. Let g, be the
corresponding unit pulse response. Then:
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(*) is called #; scaling and it will guarantee no overflow at the adder.

Problem: Large S increases roundoff noise at the filter output. There exist alternative scaling
policies. One of these is called ¢, scaling:
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It can be shown that S P <S 3 (and often much less).

With /, scaling, overflow can occur (since S t is generally less than Sfl) but it is unlikely. If

your system can afford to have very rare overflows, you may choose a less stringent scaling
policy than /1, to keep roundoff noise lower at the filter output.

Example Combined effects of scaling and roundoff noise.
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Assume fixed point, rounding arithmetic with B bits plus sign. Do these things:
a) Scale the filter using ¢ scaling.
b) Find the MSE due to rounding in terms of 'a’ and B.

¢) Examine what happens to the MSE as a function of pole location.



Solution

a) With no scaling, the unit-pulse response from the input x, to the adder output is
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In this example, g, = h;,. In general, however, this will not be the case.

To scale the filter, we use (¥) to select S as
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b) The transfer function from the quantizer to the filter output is F(z) = S ¢ H(z). Thus,
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As an example, if a = .95, then MSE = 4013 gﬁ“ .

Since 4013 ~ 212_, we see that roughly the six lowest bits in the output register would be filled
with roundoff noise.

Comments:

1) Anactual filter implementation often uses longer internal register lengths (e.g., by 6 bits)
than output register lengths, since there is no reason to present noise to the output.

' Scahng xs a problem only for fixed-point arithmetic, not for floating point.

mmme what happens to the MSE as a function of pole location.



c) H(Z):—l—_*laz—_1 = poleatz=a

Pole location:

z-plane

Notice that as the pole approaches the unit circle (in this example, as lal — 1), the MSE — oo,
Thus, longer register lengths will be needed if the pole is closer to the unit circle. This
observation is not unique to this example. Recursive filters having sharp transitions in their
frequency response tend to have poles located very near the unit circle. Such filters require long

register lengths.

Example

Find an expression for the mean-squared roundoff noise in the following £y-scaled filter.

X/

Assume a>0and b > 0.
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The transfer function from the input to the adder output, with no scaling, is
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Using the £ policy, we choose
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Now, to compute the MSE due to roundoff noise, we note that the transfer function from the
guantizer to the filter output is
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3c) Zero-Input Limit Cycles (only occur in IIR filters)

The output of a stable linear filter must decay to zero if the input drops to zero. However, in an
IIR filter, the quantizer or quantizers (nonlinear!) may cause a nonzero periodic output, which is
called a limit cycle.

Why periodic? Consider the following recursive filter, with zero input and finite-length

registers:
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The output must be periodic in this situation because the feedback delay registers can contain
only a finite number of possible pairs of values, so that at some point they must repeat. Once the
contents of the delay registers repeats, the output will become periodic because the contents of
the delay registers is a state of the system, which determines all future outputs.

Example 1

Xn Qf*] -y

7

I

1
Y¥n = Q[Xn_f)’n—-l]

Assume sign-magnitude rounding, with B=3,x,=0,n20, andy_, =% . (Here, B = 3 would be

unrealistically small for a digital filter, but this choice serves perfectly well as a simple example.)
Also, assume that the quantizer rounds up at the midpoint and that the quantizer operates only on
the bits to the right of the binary point (positive and negative numbers get quantized in a similar
way). Then: '
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In this example, the limit cycle occupies only the least significant bit.

Example 2
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Yn = Q[xn t3g Yn-l]

Assume sign-magnitude rounding with B = 6. Then the register represents:

Again, assume Q rounds up at the midpoint and that the rounding operation does not look at the
sign bit, e.g.,
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So, y,, enters a dc limit cycle that occupies the three least significant bits.

Example 3

Xp + ‘ - vn

Assume sign-magnitude rounding with 15 bits plus sign and

a=11083x2715 b = 32441 x277°



It can be shown by computer simulation that this filter has the following limit cycle:
Amplitude = 51 x271°
Period = 516

So, this limit cycle occupies 6 bits! This limit cycle can be generated by starting with (¥, Yp-1)
= (51 x2-15, 11 x 2-15), which is a state on the limit cycle.

Note: A filter may exhibit any of several different limit cycles, depending on the initial
conditions (the filter state) at the time when the input drops to zero. Also, depending on
the initial conditions, the filter output may decay to zero, with no limit cycle accessed.

Bound on Zero-Input Limit Cycles

Consider a filter with a single quantization error source:

Xn + Q L*“ ¥Yn




-B
With this model, knowledge of {x,} does nots ecify { €, {, but we do know Ie | < - , since
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{sn} was an error source from a rounding quantizer. This bound on {en} is all we will need to

derive a bound on limit cycle amplitudes.

Since no questions occur between the adders in the above diagram, our model is equivalent to
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Now, at the time n, when { xn} drops to zero, the delay registers will contain values yp _1 and
Yn,-2 which serve as initial conditions, and the filter will be driven by the “input” { &, y as

En’@ l * Vn

shown below
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This is simply a model of a linear shift-invariant system whose output will consist of two parts:
the zero-input response (response to IC’s) and the zero-state response (response to { €, }). For a
stable filter, the zero-input response will decay to zero, so that for large n the output will be given
entirely by just the zero-state response (a convolution!). That is, if f,, is the unit-pulse response

from the quantization error source €, to the filter output yy, then in steady state
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z |f| can be very large for filters with poles near the unit circle.
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Example
We have
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Comments:

1)

2)

3)

In this example, the limit cycle bound can be realized as we saw in Example 2 with
B =6, in which case 4 * 2B = g Which is the amplitude of the limit cycle we
discovered. Often, though, the limit cycie bound is not tight.

In situations where limit cycles may be moderately large, it is not unusual to use an
internal register length that is longer than the output register length.

Special low-error filter structures have been developed that have low MSE and small or
no limit cycles. These structures usually require more multiplications than Direct Form
structures. Some of these structures have been developed within the state-space
framework, which is described in the following pages.
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