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Digital Signal Processing

Lecture 5

based on slides by J.M. Kahn
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Info

• Last time
– Finished DTFT Ch. 2
– 12min z-Transforms Ch. 3

• Today: DFT Ch. 8

• Reminders:
– HW Due tonight
– Ham lecture 5-6pm HP auditorium
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What is this Phenomena?
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Figure 36: Breath-hold
post-gadolinium MRI in
a 9 year old male with
hypertension using 4X
acceleration at 1.2mm3

resolution. Left images
(a, c) are with ARC
and right (b, d) are with
L1-SPIRIT compressed
sensing. Note improved
delineation of pancreas
(big arrow), pancreatic
duct (middle arrow),
and diaphragm (small
arrow). Left gastric
artery emerges from the
noise.

6.3x, ARC 

70 seconds 

6.3x, SPIRiT 

70 seconds 

Figure 37: 3D SPGR, a 7 minute cartilage sequence too
lengthy for routine use, now with 6.3 fold acceleration.
Note restored delineation of growth plate (arrowhead) and
a nonossifying fibroma with SPIR-iT.

Figure 38: Representative images from 3D T2-weighted scan at 1.1mm3 resolution with Poisson-disc sampling and 5-fold
outer acceleration in an 8 day old female with left isomerism and absent portal vein. ARC images are too noisy. Images
reconstructed with SPIRIT show decreased noise and improved structure delineation: zoomed insets in (a) and( b) show
mesenteric veins (arrow) and liver capsule (arrowhead), zoomed insets in (c) and (d) show left gastric artery (thick arrow)
and branch hepatic artery (dashed arrow). In (e) and (f) show aliased peripheral IV tubing (carat), with true position shown
in the localizer (g).

a. equivalent or improved SNR,
b. less motion artifacts, and
c. equivalent or improved delineation of specific anatomic structures over standard methods.

1. fully sampled 3D T1
2. fully sampled 3D T2
3. conventional T2 imaging
4. fully sampled 3D T1 post-contrast

Table 2: MRI protocol to validate techni-
cal developments in D2. 3D T1 sequences
with parameters: flip angle 15 degrees,
FOV 30 cm, matrix 320 x 224, slice thick-
ness 5 mm, 40 slices, scan time approx-
imately 35 seconds. T2 sequences with
parameters: FOV 30 cm, matrix 320 x 224,
slice thickness 3 mm, 60 slices, scan time
approximately 5 minutes.

Subjects: 25 consecutive patients referred for contrast-enhanced
abdominal MRI will be recruited .

Design: Each patient will undergo an MRI protocol, as shown in
Tab. 2. Comparison of conventional techniques with the experimen-
tal methods developed in §D.2.1-D.2.3 will be performed, as shown
in Fig. 39. For each sequence the central calibration portion of k-
space will be acquired twice in interleaved fashion, i.e. each phase
encode (for T1 imaging) or echo train (T2 imaging) will be repeated
twice back-to-back. The k-space data can then be subsampled by a
factor of two in a Cartesian fashion in two ways, yielding two disjoint
datasets. The two cartesian images can then be assessed for SNR
using the difference method [70]. Similarly, two disjoint Poisson-
disc k-space data sets can be created, and reconstructed with mo-
tion correction; SNR can be assessed again using the difference
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Figure 37: 3D SPGR, a 7 minute cartilage sequence too
lengthy for routine use, now with 6.3 fold acceleration.
Note restored delineation of growth plate (arrowhead) and
a nonossifying fibroma with SPIR-iT.

Figure 38: Representative images from 3D T2-weighted scan at 1.1mm3 resolution with Poisson-disc sampling and 5-fold
outer acceleration in an 8 day old female with left isomerism and absent portal vein. ARC images are too noisy. Images
reconstructed with SPIRIT show decreased noise and improved structure delineation: zoomed insets in (a) and( b) show
mesenteric veins (arrow) and liver capsule (arrowhead), zoomed insets in (c) and (d) show left gastric artery (thick arrow)
and branch hepatic artery (dashed arrow). In (e) and (f) show aliased peripheral IV tubing (carat), with true position shown
in the localizer (g).

a. equivalent or improved SNR,
b. less motion artifacts, and
c. equivalent or improved delineation of specific anatomic structures over standard methods.

1. fully sampled 3D T1
2. fully sampled 3D T2
3. conventional T2 imaging
4. fully sampled 3D T1 post-contrast

Table 2: MRI protocol to validate techni-
cal developments in D2. 3D T1 sequences
with parameters: flip angle 15 degrees,
FOV 30 cm, matrix 320 x 224, slice thick-
ness 5 mm, 40 slices, scan time approx-
imately 35 seconds. T2 sequences with
parameters: FOV 30 cm, matrix 320 x 224,
slice thickness 3 mm, 60 slices, scan time
approximately 5 minutes.

Subjects: 25 consecutive patients referred for contrast-enhanced
abdominal MRI will be recruited .

Design: Each patient will undergo an MRI protocol, as shown in
Tab. 2. Comparison of conventional techniques with the experimen-
tal methods developed in §D.2.1-D.2.3 will be performed, as shown
in Fig. 39. For each sequence the central calibration portion of k-
space will be acquired twice in interleaved fashion, i.e. each phase
encode (for T1 imaging) or echo train (T2 imaging) will be repeated
twice back-to-back. The k-space data can then be subsampled by a
factor of two in a Cartesian fashion in two ways, yielding two disjoint
datasets. The two cartesian images can then be assessed for SNR
using the difference method [70]. Similarly, two disjoint Poisson-
disc k-space data sets can be created, and reconstructed with mo-
tion correction; SNR can be assessed again using the difference

IV tube
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Motivation: Discrete Fourier Transform

• Sampled Representation in time and frequency
– Numerical Fourier Analysis requires discrete 

representation
– But, sampling in one domain corresponds to 

periodicity in the other...
– What about DFS (DFT)? 

• Periodic in “time”  ✓
• Periodic in “Frequency” ✓

– What about non-periodic signals?
• Still use DFS(T), but need special considerations
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Motivation: Discrete Fourier Transform

• Efficient Implementations exist
– Direct evaluation of DFT: O(N2)
– Fast Fourier Transform (FFT): O(N log N)

(ch. 9, next topic....)

– Efficient libraries exist: FFTW
• In Python:
> X = np.fft.fft(x);
> x = np.fft.ifft(X);

– Convolution can be implemented efficiently 
using FFT
• Direct convolution: O(N2)
• FFT-based convolution: O(N log N)
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• Definition:
– Consider N-periodic signal:

frequency-domain N-periodic representation:

–  “~” indicates periodic signal/spectrum
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Discrete Fourier Series (DFS)

x̃[n+N ] = x̃[n] 8n

X̃[k +N ] = X̃[k] 8k
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x̃[n] =
1

N

N�1X

k=0

X̃[k]W�kn
N

X̃[k] =
N�1X

n=0

x̃[n]W kn
N
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Discrete Fourier Series (DFS)

• Define:

• DFS:

WN , e�j2⇡/N

Properties of WNkn?
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Discrete Fourier Series (DFS)

• Properties of WN:
– WN0 = WNN = WN2N=...=1
– WNk+r = WNKWNr   or, WNk+N = WNk

•  Example: WNkn (N=6)
k=1

n=1n=2

n=3

n=4
n=5

n=0,6

k=2

n=1,4,7,

n=2,5, n=0,3,6,
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Discrete Fourier Transform

• By Convention, work with one period:

x[n]

�
=

(
x̃[n] 0  n  N � 1

0 otherwise

X[k]

�
=

(
˜

X[k] 0  k  N � 1

0 otherwise

Same same..... but different!
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• The DFT

x[n] = 0 outside 0  n  N � 1

X[k] = 0 outside 0  k  N � 1
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Discrete Fourier Transform

x[n] =
1

N

N�1X

k=0

X[k]W�kn
n

X[k] =
N�1X

n=0

x[n]W kn
n

Inverse DFT, synthesis

DFT, analysis

• It is understood that, 
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Discrete Fourier Transform

• Alternative formulation (not in book)
Orthonormal DFT:

x[n] =
1p
N

N�1X

k=0

X[k]W�kn
n

X[k] =
1p
N

N�1X

n=0

x[n]W kn
n

Inverse DFT, synthesis

DFT, analysis

Why use this or the other?
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! "nx~

n

0 1#N

. . . . . .

! "kX
~

k

0

1#N

. . . . . .
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Comparison between DFS/DFT

! "nx

n

0 1#N

! "kX

k

0

1#N

DFS

DFT
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X[k] =

⇢ P4
n=0 W

nk
5 k = 0, 1, 2, 3, 4

0 otherwise

= 5�[k]
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Example

n

· · ·

x[n]

0 1 2 3 4

1

• Take N=5

“5-point DFT”
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• Q: What if we take N=10?

X[k] =

⇢ P4
n=0 W

nk
10 k = 0, 1, 2, · · · , 9

0 otherwise

M. Lustig,  EECS UC Berkeley

Example

x̃[n]

n

· · ·

x[n]

A:                       where        is a period-10 seq.X[k] = X̃[k] x̃[n]

“10-point DFT”
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Example

• Show:

“10-point DFT”

X[k] =
9X

n=0

Wnk
10

= e�j 4⇡
10 k sin(⇡2 k)

sin( ⇡
10k)

4
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X[k] =
N�1X

n=0

x[n]W kn
N =

N�1X

n=0

x[n]e�j(2⇡/N)nk 0  k  N � 1
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DFT vs DTFT

• For finite sequences of length N:
– The N-point DFT of x[n] is:

–The DTFT of x[n] is:

X(ej!) =
N�1X

n=0

x[n]e�j!n �1 < ! < 1

What is similar?
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X[k] = X(ej!)|!=k 2⇡
N

0  k  N � 1
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DFT vs DTFT

• The DFT are samples of the DTFT at N 
equally spaced frequencies
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DFT vs DTFT

• Back to moving average example:

X(ej!) =
4X

n=0

e�j!n

= e�j2! sin(
5
2!)

sin(!2 )

w
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FFTSHIFT!

• Note that k=0 is w=0 frequency
• Use fftshift to shift the spectrum so w=0 in 

the middle. 

20



N · x⇤[n] = N

�
DFT �1 {X[k]}

�⇤
.
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DFT and Inverse DFT

• Both computed similarly.....let’s play:

N · x⇤[n] = N

 
1

N

N�1X

k=0

X[k]W�kn
N

!⇤

=
N�1X

k=0

X

⇤[k]W kn
N

= DFT {X⇤[k]} .

• Also....
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DFT and Inverse DFT

• So, 

or, 
–

DFT {X⇤[k]} = N
�
DFT �1 {X[k]}

�⇤

DFT �1 {X[k]} =
1

N
(DFT {X⇤[k]})⇤

• Implement IDFT by:
– Take complex conjugate
– Take DFT
– Multiply by 1/N
– Take complex conjugate ! Why useful?
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DFT as Matrix Operator

DFT:

IDFT:

straightforward implementation requires N2 complex multiplies :-(
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DFT as Matrix Operator

• Can write compactly as:

• So, 

as expected.

X = WN x

x =
1

N
W

⇤
N X

x =
1

N
W

⇤
NX =

1

N
W

⇤
NWNx =

1

N
(NI)x = x

WHY?
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x[((n�m))N ] $ X[k]e�j(2⇡/N)km = X[k]W km
N
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Properties of DFT

• Inherited from DFS (EE120/20) so no 
need to be proved

• Linearity

• Circular Time Shift

↵1x1[n] + ↵2x2[n] $ ↵1X1[k] + ↵2X2[k]
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Circular shift

! "mnx #~

n

0 1#N

. . . . . .

m

$ %$ %! "
N

mnx #

n

0 1#Nm

! "nx~

n

0 1#N

. . . . . .

! "nx

n

0 1#N
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Properties of DFT

• Circular frequency shift

• Complex Conjugation

• Conjugate Symmetry for Real Signals

x[n]ej(2⇡/N)nl = x[n]W�nl
N $ X[((k � l))N ]

x

⇤[n] $ X

⇤[((�k))N ]

x[n] = x

⇤[n] $ X[k] = X

⇤[((�k))N ]

Show....
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Examples 

• 4-point DFT
–Basis functions?
–Symmetry

• 5-point DFT
–Basis functions?
–Symmetry
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Properties of DFT

• Parseval’s Identity

• Proof (in matrix notation)

N�1X

n=0

|x[n]|2 =
1

N

N�1X

k=0

|X[k]|2

x

⇤
x =

✓
1

N
W

⇤
NX

◆⇤ ✓ 1

N
W

⇤
NX

◆
=

1

N2
X

⇤
WNW

⇤
N| {z }

N ·I

X =
1

N
X

⇤
X
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Circular Convolution Sum

• Circular Convolution:

for two signals of length N

x1[n]�N x2[n]
�
=

N�1X

m=0

x1[m]x2[((n�m))N ]

x2[n]�N x1[n] = x1[n]�N x2[n]

• Note: Circular convolution is commutative
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Properties of DFT

• Circular Convolution: Let x1[n], x2[n] be length N

• Multiplication: Let x1[n], x2[n] be length N

x1[n]�N x2[n] $ X1[k] ·X2[k]

x1[n] · x2[n] $
1

N

X1[k]�N X2[k]

Very useful!!! ( for linear convolutions with DFT)
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Linear Convolution

• Next....
– Using DFT, circular convolution is easy 
– But, linear convolution is useful, not circular
– So, show how to perform linear convolution 

with circular convolution 
– Used DFT to do linear convolution
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