Lecture 5

What is this Phenomena?

Info

- Last time
- Finished DTFT Ch. 2
- 12min z-Transforms Ch. 3
- Today: DFT Ch. 8
- Reminders:
- HW Due tonight
- Ham lecture 5-6pm HP auditorium

Motivation: Discrete Fourier Transform

- Sampled Representation in time and frequency
- Numerical Fourier Analysis requires discrete representation
- But, sampling in one domain corresponds to periodicity in the other...
- What about DFS (DFT)?
- Periodic in "time" \checkmark
- Periodic in "Frequency" \checkmark
- What about non-periodic signals?
- Still use DFS(T), but need special considerations
M. Lustig, EECS UC Berkeley

Discrete Fourier Series (DFS)

- Definition:

- Consider N -periodic signal:

$$
\tilde{x}[n+N]=\tilde{x}[n] \quad \forall n
$$

frequency-domain N -periodic representation:

$$
\tilde{X}[k+N]=\tilde{X}[k] \quad \forall k
$$

- " \sim " indicates periodic signal/spectrum

Motivation: Discrete Fourier Transform

- Efficient Implementations exist
- Direct evaluation of DFT: O(N2)
- Fast Fourier Transform (FFT): O(N $\log \mathrm{N}$)
(ch. 9, next topic....)
- Efficient libraries exist: FFTW
- In Python:
$>X=$ np.fft.fft(x);
$>x=n p$.fft.ifft(X);
- Convolution can be implemented efficiently using FFT
- Direct convolution: O(N2)
- FFT-based convolution: O(N $\log \mathrm{N}$)

Discrete Fourier Series (DFS)

- Define:

$$
W_{N} \triangleq e^{-j 2 \pi / N}
$$

- DFS:

$$
\begin{aligned}
\tilde{x}[n] & =\frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] W_{N}^{-k n} \\
\tilde{X}[k] & =\sum_{n=0}^{N-1} \tilde{x}[n] W_{N}^{k n}
\end{aligned}
$$

Properties of $\mathrm{W}_{\mathrm{N}}{ }^{\mathrm{kn}}$?

Discrete Fourier Series (DFS)

- Properties of W_{N} :
$-W_{N}{ }^{0}=W_{N}{ }^{N}=W_{N^{2 N}}=\ldots=1$
$-W_{N}{ }^{k+r}=W_{N}{ }^{k} W_{N}{ }^{r}$ or, $W_{N^{k+N}}=W_{N^{k}}$
- Example: $\mathrm{W}^{\mathrm{kn}}(\mathrm{N}=6)$

Discrete Fourier Transform

- By Convention, work with one period:

$$
\begin{aligned}
& x[n] \triangleq \begin{cases}\tilde{x}[n] & 0 \leq n \leq N-1 \\
0 & \text { otherwise }\end{cases} \\
& X[k] \triangleq \begin{cases}\tilde{X}[k] & 0 \leq k \leq N-1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Same same..... but different!

Discrete Fourier Transform

- Alternative formulation (not in book) Orthonormal DFT:

$$
\begin{aligned}
x[n] & =\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X[k] W_{n}^{-k n} \text { Inverse DFT, synthesis } \\
X[k] & =\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[n] W_{n}^{k n} \quad \text { DFT, analysis }
\end{aligned}
$$

Why use this or the other?

Comparison between DFS/DFT

M. Lustig, EECS UC Berkeley

Example

- Q : What if we take $\mathrm{N}=10$?

A: $X[k]=\tilde{X}[k]$ where $\tilde{x}[n]$ is a period- 10 seq.

$$
X[k]=\left\{\begin{array}{cc}
\sum_{n=0}^{4} W_{10}^{n k} & k=0,1,2, \cdots, 9 \\
0 & \text { otherwise }
\end{array}\right.
$$

"10-point DFT"

Example

- Take N=5

$$
\begin{aligned}
X[k] & =\left\{\begin{array}{cc}
\sum_{n=0}^{4} W_{5}^{n k} & k=0,1,2,3,4 \\
0 & \text { otherwise }
\end{array}\right. \\
& =5 \delta[k]
\end{aligned}
$$

Example

-Show:

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{4} W_{10}^{n k} \\
& =e^{-j \frac{4 \pi}{10} k} \frac{\sin \left(\frac{\pi}{2} k\right)}{\sin \left(\frac{\pi}{10} k\right)}
\end{aligned}
$$

"10-point DFT"

DFT vs DTFT

- For finite sequences of length N :
- The N-point DFT of $x[n]$ is:

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) n k} \quad 0 \leq k \leq N-1
$$

-The DTFT of $x[n]$ is:

$$
X\left(e^{j \omega}\right)=\sum_{n=0}^{N-1} x[n] e^{-j \omega n} \quad-\infty<\omega<\infty
$$

What is similar?

DFT vs DTFT

- Back to moving average example:

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =\sum_{n=0}^{4} e^{-j \omega n} \\
& =e^{-j 2 \omega} \frac{\sin \left(\frac{5}{2} \omega\right)}{\sin \left(\frac{\omega}{2}\right)}
\end{aligned}
$$

DFT and Inverse DFT

- Both computed similarly.....let's play:

$$
\begin{aligned}
N \cdot x^{*}[n] & =N\left(\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n}\right)^{*} \\
& =\sum_{k=0}^{N-1} X^{*}[k] W_{N}^{k n} \\
& =\mathcal{D F} \mathcal{F}\left\{X^{*}[k]\right\} .
\end{aligned}
$$

- Also....

$$
N \cdot x^{*}[n]=N\left(\mathcal{D} \mathcal{F} \mathcal{T}^{-1}\{X[k]\}\right)^{*}
$$

DFT and Inverse DFT

- So,

$$
\mathcal{D F} \mathcal{T}\left\{X^{*}[k]\right\}=N\left(\mathcal{D F} \mathcal{T}^{-1}\{X[k]\}\right)^{*}
$$

or,
$\mathcal{D F T}^{-1}\{X[k]\}=\frac{1}{N}\left(\mathcal{D F T}\left\{X^{*}[k]\right\}\right)^{*}$

- Implement IDFT by:
- Take complex conjugate
- Take DFT
- Multiply by $1 / \mathrm{N}$
- Take complex conjugate !

Why useful?

DFT as Matrix Operator

> DFT:
> $\left(\begin{array}{c}x[0] \\ \vdots \\ x[k] \\ \vdots \\ x[N-1]\end{array}\right)=\left(\begin{array}{ccccc}W_{N}^{00} & \cdots & w_{N}^{0 n} & \cdots & W_{N}^{0(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ W_{N}^{k 0} & \cdots & w_{N}^{k n} & \cdots & W_{N}^{k(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ W_{N}^{(N-1) 0} & \cdots & W_{N}^{(N-1) n} & \cdots & W_{N}^{(N-1)(N-1)}\end{array}\right)\left(\begin{array}{c}x[0] \\ \vdots \\ x[n] \\ \vdots \\ x[N-1]\end{array}\right)$

$$
\left.\begin{array}{c}
\text { IDFT: } \\
x[0] \\
\vdots \\
x[n] \\
\vdots \\
x[N-1]
\end{array}\right)=\frac{1}{N}\left(\begin{array}{ccccc}
W_{N}^{-00} & \cdots & w_{N}^{-0 k} & \cdots & w_{N}^{-0(N-1)} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
W_{N}^{-n 0} & \cdots & w_{N}^{-n k} & \cdots & w_{N}^{-n(N-1)} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
W_{N}^{-(N-1) 0} & \cdots & W_{N}^{-(N-1) k} & \cdots & W_{N}^{-(N-1)(N-1)}
\end{array}\right)\left(\begin{array}{c}
x[0] \\
\vdots \\
x[k] \\
\vdots \\
x[N-1]
\end{array}\right)
$$

straightforward implementation requires N^{2} complex multiplies :-(
M. Lustig, EECS UC Berkeley

Properties of DFT

- Inherited from DFS (EE120/20) so no need to be proved
- Linearity

$$
\alpha_{1} x_{1}[n]+\alpha_{2} x_{2}[n] \leftrightarrow \alpha_{1} X_{1}[k]+\alpha_{2} X_{2}[k]
$$

- Circular Time Shift

$$
x\left[((n-m))_{N}\right] \leftrightarrow X[k] e^{-j(2 \pi / N) k m}=X[k] W_{N}^{k m}
$$

Properties of DFT

- Circular frequency shift

$$
x[n] e^{j(2 \pi / N) n l}=x[n] W_{N}^{-n l} \leftrightarrow X\left[((k-l))_{N}\right]
$$

- Complex Conjugation

$$
x^{*}[n] \leftrightarrow X^{*}\left[((-k))_{N}\right]
$$

- Conjugate Symmetry for Real Signals

$$
x[n]=x^{*}[n] \leftrightarrow X[k]=X^{*}\left[((-k))_{N}\right]
$$

Lustig, EECS UC Berkeley

Examples

- 4-point DFT

-Basis functions?
-Symmetry

- 5-point DFT
-Basis functions?
-Symmetry

Properties of DFT

- Parseval's Identity

$$
\sum_{n=0}^{N-1}|x[n]|^{2}=\frac{1}{N} \sum_{k=0}^{N-1}|X[k]|^{2}
$$

- Proof (in matrix notation)

$$
\mathbf{x}^{*} \mathbf{x}=\left(\frac{1}{N} \mathbf{W}_{N}^{*} \mathbf{X}\right)^{*}\left(\frac{1}{N} \mathbf{W}_{N}^{*} \mathbf{X}\right)=\frac{1}{N^{2}} \mathbf{X}^{*} \underbrace{\mathbf{W}_{N} \mathbf{W}_{N}^{*}}_{N \cdot \mathbf{I}} \mathbf{X}=\frac{1}{N} \mathbf{X}^{*} \mathbf{X}
$$

M. Lustig, EECS UC Berkeley

Properties of DFT

- Circular Convolution: Let $\mathrm{x} 1[\mathrm{n}], \mathrm{x} 2[\mathrm{n}]$ be length N

$$
x_{1}[n] \text { ® } x_{2}[n] \leftrightarrow X_{1}[k] \cdot X_{2}[k]
$$

Very useful!!! (for linear convolutions with DFT)

- Multiplication: Let $\mathrm{x} 1[\mathrm{n}], \mathrm{x} 2[\mathrm{n}]$ be length N

$$
x_{1}[n] \cdot x_{2}[n] \leftrightarrow \frac{1}{N} X_{1}[k] @ X_{2}[k]
$$

Circular Convolution Sum

- Circular Convolution:

$$
x_{1}[n] \text { (N) } x_{2}[n] \triangleq \sum_{m=0}^{N-1} x_{1}[m] x_{2}\left[((n-m))_{N}\right]
$$

for two signals of length N

- Note: Circular convolution is commutative

$$
x_{2}[n] ® x_{1}[n]=x_{1}[n] @ x_{2}[n]
$$

Linear Convolution

- Next....
- Using DFT, circular convolution is easy
- But, linear convolution is useful, not circular
- So, show how to perform linear convolution with circular convolution
- Used DFT to do linear convolution

