EE123
Digital Signal Processing

Lecture 6
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based on slides by J.M. Kahn

Announcements

* HW1 solutions posted -- grading due
tonight

+ HW2 due Friday
+ SDR give after GSI Wednesday
+ Finish Ch. 8, start Ch. 9

Satellite

+ Saudisat 1c has an FM repeater
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Last Time
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* Discrete Fourier Transform
— Similar to DFS
— Sampling of the DTFT (subtitles....more later)
— Properties of the DFT

* Today
— Linear convolution with DFT
— Fast Fourier Transform
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Properties of DFT

* Inherited from DFS (EE120/20) so no
need to be proved

* Linearity
ozlxl[n] + 042372[71] CY1X1 [k] + OQXQ[]{Z]
* Circular Time Shift

z[((n — m))n] <> X [k]le /™ = X[R]WH™

Circular shift
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Properties of DFT

« Circular frequency shift

z[n]e? BT/ = gn]WE™ & X[((k —1)n]

+ Complex Conjugation

z*[n] & X*|((=F))n]
+ Conjugate Symmetry for Real Signals

z[n] = 2”[n] <> X[k] = X*[((=F))N]
Show....
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Properties of DFT
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* Parseval’s Identity
N-—1 1 N—1
> |zl = N > IX[K]P
n=0 k=0

* Proof (in matrix notation)
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Circular Convolution Sum

 Circular Convolution:

N—-1

z1[n] @ 72[n] = > @a[mlas(((n — m))N]

m=0

for two signals of length N

* Note: Circular convolution is commutative

z2[n] @ 21[n] = z:1[n] @ 22[n]

Properties of DFT
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» Circular Convolution: Let x1[n], x2[n] be length N

z1[n] @ z2[n] <> Xi[k] - Xa[K]

Very useful!!! ( for linear convolutions with DFT)

* Multiplication: Let x1[n], x2[n] be length N

z1[n] - waln] & %Xl k] ® Xa[H]

Linear Convolution

* Next....
— Using DFT, circular convolution is easy
— But, linear convolution is useful, not circular

— So, show how to perform linear convolution
with circular convolution

— Used DFT to do linear convolution

M. Lustig, EECS UC Berkeley
10

Circular Convolution Sum
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 Circular Convolution:

N—-1

z1[n] @ z2[n] = > @a[mlas(((n — m))N]

m=0

for two signals of length N

* Note: Circular convolution is commutative

z2[n] @ 21[n] = z:1[n] @ 22[n]
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Properties of DFT Linear Convolution

» Circular Convolution: Let x1[n], x2[n] be length N * Next....
— Using DFT, circular convolution is easy
:r;l[n] ® a:z[n] o X [k] - X [k:] — But, linear convolution is useful, not circular
— So, show how to perform linear convolution
Very useful!!! ( for linear convolutions with DFT) with circular convolution

— Used DFT to do linear convolution
* Multiplication: Let x1[n], x2[n] be length N

z1[n] - waln] %Xl k] ® Xa[H]
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Linear Convolution using the DFT Linear Convolution using the DFT

We start with two nonperiodic sequences:

We will look at two approaches for computing y[n]:
x[n] 0<n<L-1
h[n] 0<n<P-1
(1) Direct Convolution
We can think of x[n] as a signal, and h[n] as a filter inpulse
response.

We want to compute the linear convolution:

o Evaluate the convolution sum directly.

L—1 P-1 @ This requires L - P multiplications
y[n] = x[n] = h[n] = Z x[m] * h[n — m] = Z x[n — m]h[m]
m=0 m=0
y[n] = x[n] * h[n] is nonzero only for 0 < n < L+ P —2, and is of (2) Using Circular Convolution

length L4+ P —1= M.
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Linear Convolution using the DFT

(2) Using Circular Convolution
@ Zero-pad x[n] by P — 1 zeros:

(1] x[n] 0<n<L-1
Xpln] =
P 0 L<n<L+P-2

@ Zero-pad h[n] by L — 1 zeros:

ool hln] 0<n<P-1
zpN| =
P 0 P<n<L+P-2

@ Both zero-padded sequences x,p[n] and hy,[n] are of length
M=L+P-1
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Linear Convolution using the DFT

@ Both zero-padded sequences x,p[n] and hyp[n] are of length
M=L+P-1

@ We can compute the linear convolution x[n] * h[n] = y[n] by
computing circular convolution x,p[n] @ hyp[n]:

Linear convolution via circular

yln] = x[n] * y[n] = {gzp[”] ol gtfefwie"/’ -
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Example
x1[n]
10
L=5
01 2 3 4 n
xa[n]
1 0
[ e
o1 2 3 n

M=L+P-1=8
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Example
1 [n]
10
oo o

01 2 3 4 5 6 7 n
x3[n]
10 T

01 2 3 4 5 6 7n

M=L+P-1=8
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Example
1 [n]
1 0
' o o ol -+
01 2 3 4 5 6 71
T2 (n]
1 o T
01 2 3 4 5 6 /7 n
Circular “flip’

M=L+P-1=8
yln] = z1[n] © x2[n] = z1[n] * z2[n]
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Linear Convolution using the DFT

@ In practice, the circular convolution is implemented using the
DFT circular convolution property:

x[n] x h[n] = xzp[n] W hyp[n]
= DFT Y {DFTxyln] - DFT {hyp[n]}}

foro<n<M-1, M=L+P—-1.

@ Advantage: This can be more efficient than direct linear
convolution because the FFT and inverse FFT are
O(M - log, M).

@ Drawback: We must wait until we have all of the input data.
This introduces a large delay which is incompatible with
real-time applications like communications.

@ Approach: Break input into smaller blocks. Combine the
results using 1. overlap and save or 2. overlap and add .
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Linear Convolution using the DFT

@ In practice, the circular convolution is implemented using the
DFT circular convolution property:

x[n] « h[n] = xzp[n] W hyp[n]
= DFT Y {DFTxyln] - DFT {hy[n]}}

for0o<n<M-1, M=L+P—-1.

@ Advantage: This can be more efficient than direct linear
convolution because the FFT and inverse FFT are
O(M - log, M).

@ Drawback: We must wait until we have all of the input data.
This introduces a large delay which is incompatible with
real-time applications like communications.
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Block Convolution

Problem

An input signal x[n] has very long length, which can be considered
infinite.

An impulse response h[n] has length P.

We want to compute the linear convolution

y[n] = x[n]  h[n]

using block lengths shorter than the input signal length.
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_ Overlap-Add Method
Block Convolution
We decompose the input signal x[n] into non-overlapping segments
Example: xr[n] of length L:
h[n] Impulse response, Length P=6
x[n] rL<n<(r+1)L-1
Xr[n] = [ ] . ( )
0 otherwise
TTTTT
The input signal is the sum of these input segments:
[o.@]
x[n] Input Signal, Length P=33 y[n] Output Signal, Length P=38 X[n] = Z X’[n]
r=0
| | The output signal is the sum of the output segments x,[n] * h[n]:
T S‘RPT?W ) ?TTTTTL ° | & FITTRE, ?TT[TTM‘: '
SRS |t 5 S]] ][I° o
| ylnl = x{n]  hln] = 3" x[n] = Al (1)
r=0
Each of the output segments x,[n] * h[n] is of length
N=L+P-1.
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Overlap-Add Method Example of overlap and add:
o T Xo[N] ’ Xo[N]
We can compute each output segment x.[n] * h[n] with linear TeeTolTe?, 1 T ogmeees e
convolution. | ) ] e ]
DFT-based circular convolution is usually more efficient: " -
@ Zero-pad input segment x,[n] to obtain x, ,p[n], of length N. ' xa[n] ] 7 xi[n]
@ Zero-pad the impulse response h[n] to obtain h,,[n], of length | %J,ﬂlﬂg | = ML;LLLLJ,L?
N (this needs to be done only once). i 3 ] o i N 30
o Compute each output segment using: : x2[n] TT 7 N X[ :
xc[n] » h[n] = DFT " {DFT {xe solnl} - DFT {hpli]}} oAl = . w1 e
Since output segment x,[n] x h[n] starts offset from its neighbor
xr—1[n] * h[n] by L, neighboring output segments overlap at P — 1 x[n] = xo[n]+x1[n]+x2[n] y[n] = yo[n]+y1[n]+Yy2[n]
points. ]
Finally, we just add up the output segments using (1) to obtain the lo C%T?Wo ?T TTTLTQ L foo, ?TTﬁTﬁbm
output. & | £ 5L lf =
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Overlap-Save Method

0.5 0.5

Basic Idea

We split the input signal x[n] into overlapping segments x,[n] of
length L4+ P — 1.

Perform a circular convolution of each input segment x,[n] with
the impulse response h[n], which is of length P using the DFT.
Identify the L-sample portion of each circular convolution that
corresponds to a linear convolution, and save it.

This is illustrated below where we have a block of L samples
circularly convolved with a P sample filter.
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Overlap-Save, Input Segments, Length L = 16 Overlap-Save, Output Segments, Usable Length L - 2 + 1

S Usable GginD)

....... Unusable
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Overlap-Save, Concatenation of Usable Output Segments
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Course Notes by J. M Kahn SP 2014

EE123 Digital Signal

1 2 5

[ [ Valid linear convolution!
3 4

n
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DFT vs DTFT (revisit)

+ Back to moving average example:

X(ev) =

M. Lustig, EECS UC Berkeley
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DFT and Sampling the DTFT

ejw —j4w Sin2(5w/2)
X(eY)=e ™ ——5——
sin“(w/2)
x[n] X(e")|
5 &
4 20
3 I ]ﬁ 15
2
T T 10
1
; I :
-1 0
0 5 10 15 0 2 4 6
n ®
reconstructed x[n] X
5 5¢
4 20
3¢ 15
2
10
1
0 5
=l 0
0 2 4 6 0 2 4 6
n ®
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Circular Convolution as Matrix Operation

o Diagonalize:
H[0O] 0--- 0
WyHW, 1= | 0 H[1]--- 0
: 0 HIN —1]
@ Right-multiply by Wy
[ H[0] O0--- 0 ]
WyH.=| 0 H[]-- 0 Wiy
B 0 HIN —1] |
@ Multiply both sides by x
[ H[O] 0 0 ]
WyHex = | 0  H[L]-- 0 Wix
| 0 HIN —1] |
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Circular Convolution as Matrix Operation

Circular convolution:

ho]  AN-—1] - h[1] ] T x[0]

h[1 h[0 h[2 x[1

bl @] = [1] [0] | 2] [ ]
hIN —1] AN — 2] h[O] | | x[MHI

= H.x

@ H. is a circulant matrix

@ The columns of the DFT matrix are Eigen vectors of circulant
matrices.

@ Eigen vectors are DFT coefficients. How can you show?
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