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EE123
Digital Signal Processing

Lecture 6

based on slides by J.M. Kahn
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Announcements

• HW1 solutions posted -- grading due 
tonight

• HW2 due Friday
• SDR give after GSI Wednesday
• Finish Ch. 8, start Ch. 9 
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Satellite

• Saudisat 1c has an FM repeater
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Last Time

• Discrete Fourier Transform
– Similar to DFS
– Sampling of the DTFT (subtitles....more later)
– Properties of the DFT

• Today
– Linear convolution with DFT
– Fast Fourier Transform  
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x[((n�m))N ] $ X[k]e�j(2⇡/N)km = X[k]W km
N
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Properties of DFT

• Inherited from DFS (EE120/20) so no 
need to be proved

• Linearity

• Circular Time Shift

↵1x1[n] + ↵2x2[n] $ ↵1X1[k] + ↵2X2[k]
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Circular shift
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Properties of DFT

• Circular frequency shift

• Complex Conjugation

• Conjugate Symmetry for Real Signals

x[n]ej(2⇡/N)nl = x[n]W�nl
N $ X[((k � l))N ]

x

⇤[n] $ X

⇤[((�k))N ]

x[n] = x

⇤[n] $ X[k] = X

⇤[((�k))N ]

Show....
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Properties of DFT

• Parseval’s Identity

• Proof (in matrix notation)
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Circular Convolution Sum

• Circular Convolution:

for two signals of length N

x1[n]�N x2[n]
�
=

N�1X

m=0

x1[m]x2[((n�m))N ]

x2[n]�N x1[n] = x1[n]�N x2[n]

• Note: Circular convolution is commutative
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Properties of DFT

• Circular Convolution: Let x1[n], x2[n] be length N

• Multiplication: Let x1[n], x2[n] be length N

x1[n]�N x2[n] $ X1[k] ·X2[k]

x1[n] · x2[n] $
1

N

X1[k]�N X2[k]

Very useful!!! ( for linear convolutions with DFT)
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Linear Convolution

• Next....
– Using DFT, circular convolution is easy 
– But, linear convolution is useful, not circular
– So, show how to perform linear convolution 

with circular convolution 
– Used DFT to do linear convolution
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Circular Convolution Sum

• Circular Convolution:

for two signals of length N

x1[n]�N x2[n]
�
=

N�1X

m=0

x1[m]x2[((n�m))N ]

x2[n]�N x1[n] = x1[n]�N x2[n]

• Note: Circular convolution is commutative
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x1[n]

x2[n]

y[n] = x1[n] �7 x2[n] =?
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Compute Circular Convolution Sum

n0 1 2 3 4

1

n0 1 2

1

5 6

3

13

x1[n]

x2[n]
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Compute Circular Convolution Sum

n0 1 2 3 4

1

n0 1 2

1

5 6

3 4 5 6

Circular ‘flip’
multiply and add
Here: y[0]

y[n] = x1[n] �7 x2[n] =?

14

x1[n]

x2[n]
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Compute Circular Convolution Sum

n0 1 2 3 4

1

n0 1 2

1

5 6

3 4 5 6

Equivalent periodic convolution over a period

y[n] = x1[n] �7 x2[n] =?
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Result

n0 1 2 3 4

2

5 6

y[n] = x1[n] �7 x2[n] =?
4
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Properties of DFT

• Circular Convolution: Let x1[n], x2[n] be length N

• Multiplication: Let x1[n], x2[n] be length N

x1[n]�N x2[n] $ X1[k] ·X2[k]

x1[n] · x2[n] $
1

N

X1[k]�N X2[k]

Very useful!!! ( for linear convolutions with DFT)
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Linear Convolution

• Next....
– Using DFT, circular convolution is easy 
– But, linear convolution is useful, not circular
– So, show how to perform linear convolution 

with circular convolution 
– Used DFT to do linear convolution
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Linear Convolution using the DFT

We start with two nonperiodic sequences:

x [n] 0  n  L� 1
h[n] 0  n  P � 1

We can think of x [n] as a signal, and h[n] as a filter inpulse
response.
We want to compute the linear convolution:

y [n] = x [n] ⇤ h[n] =
L�1X

m=0

x [m] ⇤ h[n �m] =
P�1X

m=0

x [n �m]h[m]

y [n] = x [n] ⇤ h[n] is nonzero only for 0  n  L+ P � 2, and is of
length L+ P � 1 = M.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2012, EE123 Digital Signal ProcessingSP 2014
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Linear Convolution using the DFT

We will look at two approaches for computing y [n]:

(1) Direct Convolution

Evaluate the convolution sum directly.

This requires L · P multiplications

(2) Using Circular Convolution

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2012, EE123 Digital Signal ProcessingSP 2014
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Linear Convolution using the DFT

(2) Using Circular Convolution

Zero-pad x [n] by P � 1 zeros:

x
zp

[n] =

(
x [n] 0  n  L� 1

0 L  n  L+ P � 2

Zero-pad h[n] by L� 1 zeros:

h
zp

[n] =

(
h[n] 0  n  P � 1

0 P  n  L+ P � 2

Both zero-padded sequences x
zp

[n] and h
zp

[n] are of length
M = L+ P � 1

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2012, EE123 Digital Signal ProcessingSP 2014
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Linear Convolution using the DFT

Both zero-padded sequences x
zp

[n] and h
zp

[n] are of length
M = L+ P � 1

We can compute the linear convolution x [n] ⇤ h[n] = y [n] by
computing circular convolution x

zp

[n]�M h
zp

[n]:

Linear convolution via circular

y [n] = x [n] ⇤ y [n] =
(
x
zp

[n]�M h
zp

[n] 0  n  M � 1

0 otherwise

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2012, EE123 Digital Signal ProcessingSP 2014
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x1[n]

x2[n]
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Example

n0 1 2 3 4

1

n0 1 2

1

3

L=5

P=4

M = L + P - 1 = 8
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x1[n]

x2[n]
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Example

n0 1 2 3 4

1

n0 1 2

1

3

M = L + P - 1 = 8

6 75

4 6 75
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x1[n]

x2[n]

y[n] = x1[n] �8 x2[n] = x1[n] ⇤ x2[n]

M. Lustig,  EECS UC Berkeley

Example

n0 1 2 3 4

1

n0 1 2

1

3

M = L + P - 1 = 8

6 75

4 6 75

Circular ‘flip’
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Linear Convolution using the DFT

In practice, the circular convolution is implemented using the
DFT circular convolution property:

x [n] ⇤ h[n] = x
zp

[n]�M h
zp

[n]

= DFT �1 {DFTx
zp

[n] · DFT {h
zp

[n]}}

for 0  n  M � 1, M = L+ P � 1.
Advantage: This can be more e�cient than direct linear
convolution because the FFT and inverse FFT are
O(M · log

2

M).
Drawback: We must wait until we have all of the input data.
This introduces a large delay which is incompatible with
real-time applications like communications.

Approach: Break input into smaller blocks. Combine the
results using 1. overlap and save or 2. overlap and add .

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2012, EE123 Digital Signal ProcessingSP 2014
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Linear Convolution using the DFT

In practice, the circular convolution is implemented using the
DFT circular convolution property:

x [n] ⇤ h[n] = x
zp

[n]�M h
zp

[n]

= DFT �1 {DFTx
zp

[n] · DFT {h
zp

[n]}}

for 0  n  M � 1, M = L+ P � 1.
Advantage: This can be more e�cient than direct linear
convolution because the FFT and inverse FFT are
O(M · log

2

M).
Drawback: We must wait until we have all of the input data.
This introduces a large delay which is incompatible with
real-time applications like communications.
Approach: Break input into smaller blocks. Combine the
results using 1. overlap and save or 2. overlap and add .
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Block Convolution

Problem

An input signal x [n] has very long length, which can be considered
infinite.
An impulse response h[n] has length P .
We want to compute the linear convolution

y [n] = x [n] ⇤ h[n]

using block lengths shorter than the input signal length.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2012, EE123 Digital Signal ProcessingSP 2014
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Block Convolution

Example:
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Block Convolution

Example:
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Block Convolution

Example:

0 10 20 30

-0.5

0

0.5

n

x[
n]

Input Signal, Length 33

0 10 20 30

-0.5

0

0.5

n

h[
n]

Impulse Response, Length P  = 6

0 10 20 30

-0.5

0

0.5

n

y[
n]

Linear Convolution, Length 38
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h[n] Impulse response, Length P=6 

x[n] Input Signal, Length P=33 y[n] Output Signal, Length P=38 

Block Convolution

Example:

29

Overlap-Add Method

We decompose the input signal x [n] into non-overlapping segments
x
r

[n] of length L:

x
r

[n] =

(
x [n] rL  n  (r + 1)L� 1

0 otherwise

The input signal is the sum of these input segments:

x [n] =
1X

r=0

x
r

[n]

The output signal is the sum of the output segments x
r

[n] ⇤ h[n]:

y [n] = x [n] ⇤ h[n] =
1X

r=0

x
r

[n] ⇤ h[n] (1)

Each of the output segments x
r

[n] ⇤ h[n] is of length
N = L+ P � 1.
Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2012, EE123 Digital Signal ProcessingSP 2014
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Overlap-Add Method

We can compute each output segment x
r

[n] ⇤ h[n] with linear
convolution.
DFT-based circular convolution is usually more e�cient:

Zero-pad input segment x
r

[n] to obtain x
r ,zp[n], of length N.

Zero-pad the impulse response h[n] to obtain h
zp

[n], of length
N (this needs to be done only once).
Compute each output segment using:

x
r

[n] ⇤ h[n] = DFT �1 {DFT {x
r ,zp[n]} · DFT {h

zp

[n]}}

Since output segment x
r

[n] ⇤ h[n] starts o↵set from its neighbor
x
r�1

[n] ⇤ h[n] by L, neighboring output segments overlap at P � 1
points.
Finally, we just add up the output segments using (1) to obtain the
output.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2012, EE123 Digital Signal ProcessingSP 2014
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Overlap-Add Method
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Block Convolution

Example:
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Block Convolution

Example:
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x0[n]

x1[n]

x2[n]

x[n] = x0[n]+x1[n]+x2[n] y[n] = y0[n]+y1[n]+y2[n]

x0[n]

x1[n]

x2[n]

Example of overlap and add:
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Overlap-Save Method

Basic Idea
We split the input signal x [n] into overlapping segments x

r

[n] of
length L+ P � 1.
Perform a circular convolution of each input segment x

r

[n] with
the impulse response h[n], which is of length P using the DFT.
Identify the L-sample portion of each circular convolution that
corresponds to a linear convolution, and save it.
This is illustrated below where we have a block of L samples
circularly convolved with a P sample filter.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2012, EE123 Digital Signal ProcessingSP 2014
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Recall:
x1[n]

x2[n]

n0 1 2 3 4

1

n0 1 2

1

5 6

3 4 5 6

n0 1 2 3 4

2

5 6

4
Valid linear convolution!
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Overlap-Save Method
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DFT vs DTFT (revisit)

• Back to moving average example:

X(ej!) =
4X

n=0

e�j!n

= e�j2! sin(
5
2!)

sin(!2 )

w
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DFT and Sampling the DTFT

X (e j!) = e�j4! sin
2(5!/2)

sin2(!/2)
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Circular Convolution as Matrix Operation

Circular convolution:

h[n]�N x [n] =

2

6664

h[0] h[N � 1] · · · h[1]
h[1] h[0] h[2]

...
h[N � 1] h[N � 2] h[0]

3

7775

2

6664

x [0]
x [1]
...

x [N]

3

7775

= H
c

x

H
c

is a circulant matrix
The columns of the DFT matrix are Eigen vectors of circulant
matrices.
Eigen vectors are DFT coe�cients. How can you show?
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N-1
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Circular Convolution as Matrix Operation

Diagonalize:

W
N

H
c

W�1

n

=

2

64
H[0] 0 · · · 0
0 H[1] · · · 0
... 0 H[N � 1]

3

75

Right-multiply by W
N

W
N

H
c

=

2

64
H[0] 0 · · · 0
0 H[1] · · · 0
... 0 H[N � 1]

3

75W
N

Multiply both sides by x

W
N

H
c

x =

2

64
H[0] 0 · · · 0
0 H[1] · · · 0
... 0 H[N � 1]

3

75W
N

x
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