
M. Lustig, EECS UC Berkeley

EE123
Digital Signal Processing

Lecture 7

based on slides by J.M. Kahn
1

M. Lustig, EECS UC Berkeley

Announcements

• Notes posted
• HW2 due Friday
• SDR give away Today!
• Read Ch. 9

• $$$ give me your names

2

M. Lustig, EECS UC Berkeley

Last Time

• Discrete Fourier Transform
– Properties of the DFT
– Linear convolution with DFT

• Overlap and add
• Overlap and save

• Today
– Fast Fourier Transform

3

M. Lustig, EECS UC Berkeley

DFT vs DTFT (revisit)

• Back to moving average example:

X(ej!) =
4X

n=0

e�j!n

= e�j2! sin(
5
2!)

sin(!2)

w

4

DFT and Sampling the DTFT

X (e j!) = e�j4! sin
2(5!/2)

sin2(!/2)

0 5 10 15
−1

0

1

2

3

4

5

x[n]

n
0 2 4 6

0

5

10

15

20

25

ω

|X(ejω)|

0 2 4 6
−1

0

1

2

3

4

5

reconstructed x[n]

n
0 2 4 6

0

5

10

15

20

25

ω

|X(ejω)|

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal Processing

5

Circular Convolution as Matrix Operation

Circular convolution:

h[n]�N x [n] =

2

6664

h[0] h[N � 1] · · · h[1]
h[1] h[0] h[2]

...
h[N � 1] h[N � 2] h[0]

3

7775

2

6664

x [0]
x [1]
...

x [N]

3

7775

= H
c

x

H
c

is a circulant matrix
The columns of the DFT matrix are Eigen vectors of circulant
matrices.
Eigen vectors are DFT coe�cients. How can you show?

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

N-1

6

7

Circular Convolution as Matrix Operation

Diagonalize:

W
N

H
c

W�1

n

=

2

64
H[0] 0 · · · 0
0 H[1] · · · 0
... 0 H[N � 1]

3

75

Right-multiply by W
N

W
N

H
c

=

2

64
H[0] 0 · · · 0
0 H[1] · · · 0
... 0 H[N � 1]

3

75W
N

Multiply both sides by x

W
N

H
c

x =

2

64
H[0] 0 · · · 0
0 H[1] · · · 0
... 0 H[N � 1]

3

75W
N

x

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

8

Fast Fourier Transform Algorithms

We are interested in e�cient computing methods for the DFT
and inverse DFT:

X [k] =
N�1X

n=0

x [n]W kn

N

, k = 0, . . . ,N � 1

x [n] =
N�1X

k=0

X [k]W�kn

N

, n = 0, . . . ,N � 1

where
W

N

= e�j(2⇡
N

).

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

9

Recall that we can use the DFT to compute the inverse DFT:

DFT �1{X [k]} =
1

N
(DFT {X ⇤[k]})⇤

Hence, we can just focus on e�cient computation of the DFT.

Straightforward computation of an N-point DFT (or inverse
DFT) requires N2 complex multiplications.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

10

Fast Fourier transform algorithms enable computation of an
N-point DFT (or inverse DFT) with the order of just
N · log

2

N complex multiplications.
This can represent a huge reduction in computational load,
especially for large N.

N N2 N · log
2

N N

2

N·log
2

N

16 256 64 4.0
128 16,384 896 18.3
1,024 1,048,576 10,240 102.4
8,192 67,108,864 106,496 630.2
6⇥ 106 36⇥ 1012 135⇥ 106 2.67⇥ 105

* 6Mp image size

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

11

Most FFT algorithms exploit the following properties of W kn

N

:

Conjugate Symmetry

W k(N�n)

N

= W�kn

N

= (W kn

N

)⇤

Periodicity in n and k :

W kn

N

= W k(n+N)

N

= W (k+N)n

N

Power:
W 2

N

= W
N/2

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

12

Most FFT algorithms decompose the computation of a DFT
into successively smaller DFT computations.

Decimation-in-time algorithms decompose x [n] into
successively smaller subsequences.
Decimation-in-frequency algorithms decompose X [k] into
successively smaller subsequences.

We mostly discuss decimation-in-time algorithms here.

Assume length of x [n] is power of 2 (N = 2⌫). If smaller
zero-pad to closest power.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

13

Decimation-in-Time Fast Fourier Transform

We start with the DFT

X [k] =
N�1X

n=0

x [n]W kn

N

, k = 0, . . . ,N � 1

Separate the sum into even and odd terms:

X [k] =
X

n even

x [n]W kn

N

+
X

n odd

x [n]W kn

N

These are two DFT’s, each with half of the samples.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

14

Decimation-in-Time Fast Fourier Transform

Let n = 2r (n even) and n = 2r + 1 (n odd):

X [k] =

(N/2)�1X

r=0

x [2r]W 2rk

N

+

(N/2)�1X

r=0

x [2r + 1]W (2r+1)k

N

=

(N/2)�1X

r=0

x [2r]W 2rk

N

+W k

N

(N/2)�1X

r=0

x [2r + 1]W 2rk

N

Note that:

W 2rk

N

= e�j(2⇡
N

)(2rk) = e
�j

⇣
2⇡
N/2

⌘
rk

= W rk

N/2

Remember this trick, it will turn up often.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

15

Decimation-in-Time Fast Fourier Transform

Hence:

X [k] =

(N/2)�1X

r=0

x [2r]W rk

N/2 +W k

N

(N/2)�1X

r=0

x [2r + 1]W rk

N/2

�

= G [k] +W k

N

H[k], k = 0, . . . ,N � 1

where we have defined:

G [k]
�

=

(N/2)�1X

r=0

x [2r]W rk

N/2) DFT of even idx

H[k]
�

=

(N/2)�1X

r=0

x [2r + 1]W rk

N/2) DFT of odd idx

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

16

Decimation-in-Time Fast Fourier Transform

An 8 sample DFT can then be diagrammed as

x[0]

x[2]

x[4]

x[6]

x[1]

x[3]

x[5]

x[7]

N/2 - Point
DFT

N/2 - Point
DFT

G[0]

G[1]

G[2]

G[3]

H[0]

H[1]

H[2]

H[3]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

WN
0

WN
1

WN
2

WN
3

WN
4

WN
5

WN
6

WN
7

E
v
e
n
 S

a
m

p
le

s
O

d
d
 S

a
m

p
le

s

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

17

Decimation-in-Time Fast Fourier Transform

Both G [k] and H[k] are periodic, with period N/2. For
example

G [k + N/2] =

(N/2)�1X

r=0

x [2r]W r(k+N/2)
N/2

=

(N/2)�1X

r=0

x [2r]W rk

N/2W
r(N/2)
N/2

=

(N/2)�1X

r=0

x [2r]W rk

N/2

= G [k]

so

G [k + (N/2)] = G [k]

H[k + (N/2)] = H[k]

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

18

Decimation-in-Time Fast Fourier Transform

The periodicity of G [k] and H[k] allows us to further simplify.
For the first N/2 points we calculate G [k] and W k

N

H[k], and
then compute the sum

X [k] = G [k] +W k

N

H[k] 8{k : 0 k <
N

2
}.

How does periodicity help for N

2

 k < N?

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

19

Decimation-in-Time Fast Fourier Transform

X [k] = G [k] +W k

N

H[k] 8{k : 0 k <
N

2
}.

for N

2

 k < N:

W k+(N/2)
N

=?

X [k + (N/2)] =?

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

20

Decimation-in-Time Fast Fourier Transform

X [k + (N/2)] = G [k]�W k

N

H[k]

We previously calculated G [k] and W k

N

H[k].

Now we only have to compute their di↵erence to obtain the second
half of the spectrum. No additional multiplies are required.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

21

Decimation-in-Time Fast Fourier Transform

The N-point DFT has been reduced two N/2-point DFTs,
plus N/2 complex multiplications. The 8 sample DFT is then:

x[0]

x[2]

x[4]

x[6]

x[1]

x[3]

x[5]

x[7]

N/2 - Point
DFT

N/2 - Point
DFT

G[k]

H[k]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

WN
0

WN
1

WN
2

WN
3

E
v
e
n
 S

a
m

p
le

s
O

d
d
 S

a
m

p
le

s

WN
k

-1

-1

-1

-1

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

22

Decimation-in-Time Fast Fourier Transform

Note that the inputs have been reordered so that the outputs
come out in their proper sequence.
We can define a butterfly operation, e.g., the computation of
X [0] and X [4] from G [0] and H[0]:

G[0] X[0] =G[0] + WN
0

H[0]

WN
0

-1

H[0] X[4] =G[0] - WN
0

H[0]

This is an important operation in DSP.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

23

Decimation-in-Time Fast Fourier Transform

Still O(N2) operations..... What shall we do?

x[0]

x[2]

x[4]

x[6]

x[1]

x[3]

x[5]

x[7]

N/2 - Point
DFT

N/2 - Point
DFT

G[k]

H[k]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

WN
0

WN
1

WN
2

WN
3

E
v
e
n
 S

a
m

p
le

s
O

d
d
 S

a
m

p
le

s

WN
k

-1

-1

-1

-1

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

24

Decimation-in-Time Fast Fourier Transform

We can use the same approach for each of the N/2 point
DFT’s. For the N = 8 case, the N/2 DFTs look like

x[0]

x[2]

x[4]

x[6]

N/4 - Point
DFT

G[1]

G[2]

G[3]

N/4 - Point
DFT

G[0]

WN/2
0

WN/2
1

-1

-1

*Note that the inputs have been reordered again.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

25

Decimation-in-Time Fast Fourier Transform

At this point for the 8 sample DFT, we can replace the
N/4 = 2 sample DFT’s with a single butterfly.
The coe�cient is

W
N/4 = W

8/4 = W
2

= e�j⇡ = �1

The diagram of this stage is then

-1

x[0]

x[4]

1

x[0] + x[4]

x[0] - x[4]

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

26

Decimation-in-Time Fast Fourier Transform

Combining all these stages, the diagram for the 8 sample DFT is:

x[0]

x[2]

x[4]

x[6]

x[1]

x[3]

x[5]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

WN
0

WN
1

WN
2

WN
3

-1

-1

-1

-1

WN/2
0

WN/2
1

-1

-1

WN/2
0

WN/2
1

-1

-1

-1

-1

-1

-1

This the decimation-in-time FFT algorithm.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

27

Decimation-in-Time Fast Fourier Transform

In general, there are log
2

N stages of decimation-in-time.

Each stage requires N/2 complex multiplications, some of
which are trivial.

The total number of complex multiplications is (N/2) log
2

N.

The order of the input to the decimation-in-time FFT
algorithm must be permuted.

First stage: split into odd and even. Zero low-order bit first
Next stage repeats with next zero-lower bit first.
Net e↵ect is reversing the bit order of indexes

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

28

Decimation-in-Time Fast Fourier Transform

This is illustrated in the following table for N = 8.

Decimal Binary Bit-Reversed Binary Bit-Reversed Decimal

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

29

Decimation-in-Frequency Fast Fourier Transform

The DFT is

X [k] =
N�1X

n=0

x [n]W nk

N

If we only look at the even samples of X [k], we can write k = 2r ,

X [2r] =
N�1X

n=0

x [n]W n(2r)

N

We split this into two sums, one over the first N/2 samples, and
the second of the last N/2 samples.

X [2r] =

(N/2)�1X

n=0

x [n]W 2rn

N

+

(N/2)�1X

n=0

x [n + N/2]W 2r(n+N/2)
N

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

30

Decimation-in-Frequency Fast Fourier Transform

But W 2r(n+N/2)
N

= W 2rn

N

WN

N

= W 2rn

N

= W rn

N/2.
We can then write

X [2r] =

(N/2)�1X

n=0

x [n]W 2rn

N

+

(N/2)�1X

n=0

x [n + N/2]W 2r(n+N/2)
N

=

(N/2)�1X

n=0

x [n]W 2rn

N

+

(N/2)�1X

n=0

x [n + N/2]W 2rn

N

=

(N/2)�1X

n=0

(x [n] + x [n + N/2])W rn

N/2

This is the N/2-length DFT of first and second half of x [n]
summed.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

31

Decimation-in-Frequency Fast Fourier Transform

X [2r] = DFT
N

2

{(x [n] + x [n + N/2])}

X [2r + 1] = DFT
N

2

{(x [n]� x [n + N/2])W n

N

}

(By a similar argument that gives the odd samples)

Continue the same approach is applied for the N/2 DFTs, and the
N/4 DFT’s until we reach simple butterflies.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

32

Decimation-in-Frequency Fast Fourier Transform

The diagram for and 8-point decimation-in-frequency DFT is as
follows

x[0]

x[2]

x[1]

x[3]

x[4]

x[6]

x[5]

x[7]

X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]

WN
0

WN
1

WN
2

WN
3

-1

-1

-1

-1

WN/2
0

WN/2
1

-1

-1

-1

-1

-1

-1-1

-1

WN/2
0

WN/2
1

This is just the decimation-in-time algorithm reversed!
The inputs are in normal order, and the outputs are bit reversed.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

33

Non-Power-of-2 FFT’s

A similar argument applies for any length DFT, where the length
N is a composite number.
For example, if N = 6, a decimation-in-time FFT could compute
three 2-point DFT’s followed by two 3-point DFT’s

x[0]

x[1]

x[3]

x[4]

x[2]

x[5]

2-Point

DFT

2-Point

DFT

2-Point

DFT

3-Point

DFT

3-Point

DFT

W6
0

W6
1

W6
2

X[0]

X[2]

X[4]

X[1]

X[3]

X[5]

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

34

Non-Power-of-2 FFT’s

Good component DFT’s are available for lengths up to 20 or so.
Many of these exploit the structure for that specific length. For
example, a factor of

WN/4
N

= e�j

2⇡
N

(N/4) = e�j

⇡
2 = �j Why?

just swaps the real and imaginary components of a complex
number, and doesn’t actually require any multiplies.
Hence a DFT of length 4 doesn’t require any complex multiplies.
Half of the multiplies of an 8-point DFT also don’t require
multiplication.
Composite length FFT’s can be very e�cient for any length that
factors into terms of this order.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

35

For example N = 693 factors into

N = (7)(9)(11)

each of which can be implemented e�ciently. We would perform

9⇥ 11 DFT’s of length 7
7⇥ 11 DFT’s of length 9, and
7⇥ 9 DFT’s of length 11

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

36

Historically, the power-of-two FFTs were much faster (better
written and implemented).
For non-power-of-two length, it was faster to zero pad to
power of two.
Recently this has changed. The free FFTW package
implements very e�cient algorithms for almost any filter
length. Matlab has used FFTW since version 6

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

37

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

38

FFT as Matrix Operation

0

BBBBBBBB@

X [0]

.

.

.

X [k]

.

.

.

X [N � 1]

1

CCCCCCCCA

=

0

BBBBBBBBBB@

W

00

N

· · · W

0n

N

· · · W

0(N�1)

N

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

W

k0

N

· · · W

kn

N

· · · W

k(N�1)

N

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

W

(N�1)0

N

· · · W

(N�1)n

N

· · · W

(N�1)(N�1)

N

1

CCCCCCCCCCA

0

BBBBBBBB@

x[0]

.

.

.

x[n]

.

.

.

x[N � 1]

1

CCCCCCCCA

W
N

is fully populated) N2 entries.

FFT is a decomposition of W
N

into a more sparse form:

F
N

=

I
N/2 D

N/2

I
N/2 �D

N/2

�
W

N/2 0
0 W

N/2

�
Even-Odd Perm.

Matrix

�

I
N/2 is an identity matrix. D

N/2 is a diagonal with entries

1, W
N

, · · · ,WN/2�1

N

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

39

FFT as Matrix Operation

0

BBBBBBBB@

X [0]

.

.

.

X [k]

.

.

.

X [N � 1]

1

CCCCCCCCA

=

0

BBBBBBBBBB@

W

00

N

· · · W

0n

N

· · · W

0(N�1)

N

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

W

k0

N

· · · W

kn

N

· · · W

k(N�1)

N

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

W

(N�1)0

N

· · · W

(N�1)n

N

· · · W

(N�1)(N�1)

N

1

CCCCCCCCCCA

0

BBBBBBBB@

x[0]

.

.

.

x[n]

.

.

.

x[N � 1]

1

CCCCCCCCA

W
N

is fully populated) N2 entries.
FFT is a decomposition of W

N

into a more sparse form:

F
N

=

I
N/2 D

N/2

I
N/2 �D

N/2

�
W

N/2 0
0 W

N/2

�
Even-Odd Perm.

Matrix

�

I
N/2 is an identity matrix. D

N/2 is a diagonal with entries

1, W
N

, · · · ,WN/2�1

N

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

40

FFT as Matrix Operation

Example: N = 4

F
4

=

2

664

1 0 1 0
0 1 0 W

4

1 0 �1 0
0 1 0 �W

4

3

775

2

664

1 1 0 0
1 �1 0 0
0 0 1 1
0 0 1 �1

3

775

2

664

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

3

775

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014

41

M. Lustig, EECS UC Berkeley

Beyond NlogN

• What if the signal x[n] has a k sparse frequency
– A. Gilbert et. al, “Near-optimal sparse Fourier representations via

sampling
– H. Hassanieh et. al, “Nearly Optimal Sparse Fourier Transform”
– Others......

• O(K Log N) instead of O(N Log N)

From: http://groups.csail.mit.edu/netmit/sFFT/paper.html
42

