

The first NMR spectrum of ethanol 1951.

OН

M. Lustig, EECS UC Berkeley

Spectral Analysis with the DFT

The DFT can be used to analyze the spectrum of a signal.

It would seem that this should be simple, take a block of the signal and compute the spectrum with the DFT.

However, there are many important issues and tradeoffs:

- Signal duration vs spectral resolution
- Signal sampling rate vs spectral range
- Spectral sampling rate
- Spectral artifacts

Spectral Analysis with the DFT

Consider these steps of processing continuous-time signals:

Filtered Continuous-Time Signal

We consider an example:

Spectral Analysis with the DFT

Two important tools:

- Applying a window to the input signal reduces spectral artifacts
- Padding input signal with zeros increases the spectral sampling

Key Parameters:

Parameter	Symbol	Units
Sampling interval	T	s
Sampling frequency	$\Omega_s = \frac{2\pi}{T}$	rad/s
Window length	L	unitless
Window duration	$L \cdot T$	s
DFT length	$N \ge L$	unitless
DFT duration	$N \cdot T$	s
Spectral resolution	$\frac{\Omega_s}{I} = \frac{2\pi}{I \cdot T}$	rad/s
Spectral sampling interval	$\frac{\overline{\Omega_s}}{N} = \frac{2\pi}{N \cdot T}$	rad/s

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal Processing

6

Sampled Filtered Continuous-Time Signal

Sampled Signal

If we sampled the signal over an infinite time duration, we would have:

$$x[n] = x_c(t)|_{t=nT}, \quad -\infty < n < \infty$$

described by the discrete-time Fourier transform:

$$X(e^{j\Omega T}) = \frac{1}{T} \sum_{r=-\infty}^{\infty} X_c \left(j \left(\Omega - r \frac{2\pi}{T} \right) \right), \quad -\infty < \Omega < \infty$$

Recall $X(e^{j\omega}) = X(e^{j\Omega T})$, where $\omega = \Omega T$... more in ch 4.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal Processing

Sampled Filtered Continuous-Time Signal

In the examples shown here, the sampling rate is $\Omega_s/2\pi=1/T=20$ Hz, sufficiently high that aliasing does not occur.

Windowed Sampled Signal

Windowed Block of *L* Signal Samples

We take the block of signal samples and multiply by a window of duration L, obtaining:

$$v[n] = x[n] \cdot w[n], \quad 0 \le n \le L - 1$$

Suppose the window w[n] has DTFT $W(e^{j\omega})$.

Then the windowed block of signal samples has a DTFT given by the periodic convolution between $X(e^{j\omega})$ and $W(e^{j\omega})$:

$$V(e^{j\omega}) = rac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j heta}) W(e^{j(\omega- heta)}) d heta$$

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal Processing

Windowed Sampled Signal

Block of *L* Signal Samples

In any real system, we sample only over a finite block of \boldsymbol{L} samples:

 $x[n] = x_c(t)|_{t=nT}, \quad 0 \le n \le L-1$

This simply corresponds to a rectangular window of duration *L*.

Recall: in Homework 1 we explored the effect of rectangular and triangular windowing $% \left({{{\left[{{{\left[{{{\left[{{{c_{{\rm{m}}}}} \right]}} \right.} \right]}_{\rm{max}}}}} \right)$

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal Processing

10

Windowed Sampled Signal

Convolution with $W(e^{j\omega})$ has two effects in the spectrum:

- It limits the spectral resolution. Main lobes of the DTFT of the window
- The window can produce spectral leakage. Side lobes of the DTFT of the window

* These two are always a tradeoff - time-frequency uncertainty principle

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal Processing

Windows (as defined in MATLAB)

Rectangular Boxcar Fourier $w[n] = \begin{cases} 1 & n \le M/2 \\ 0 & n > M/2 \end{cases}$ boxcar (M+1) $\int_{0}^{1} \int_{0}^{1} \int_{$	Name(s)	Definition	MATLAB Command	Graph (<i>M</i> = 8)
Triangular $w[n] = \begin{cases} 1 - \frac{ n }{M/2 + 1} & n \le M/2 \\ 0 & n > M/2 \end{cases}$ triang (M+1) $uage (M+1)$ Bartlett $w[n] = \begin{cases} 1 - \frac{ n }{M/2} & n \le M/2 \\ 0 & n > M/2 \end{cases}$ bartlett (M+1) $uage (M+1)$	Rectangular Boxcar Fourier	$w[n] = \begin{cases} 1 & n \le M/2 \\ 0 & n > M/2 \end{cases}$	boxcar (M+1)	$\begin{array}{c c} & & & & & \\ & & & & \\ & & & \\ & & & \\ \hline \\ & & & \\ \hline \\ & & \\ \hline \\ & \\ &$
Bartlett $w[n] = \begin{cases} 1 - \frac{ n }{M/2} & n \le M/2 \\ 0 & n > M/2 \end{cases}$ bartlett (M+1) $u[n] = \begin{cases} 1 - \frac{ n }{M/2} & n \le M/2 \\ 0 & n > M/2 \end{cases}$ bartlett (M+1) $u[n] = \begin{cases} 1 - \frac{ n }{M/2} & n \le M/2 \\ 0 & n > M/2 \end{cases}$ bartlett (M+1) $u[n] = \begin{cases} 1 - \frac{ n }{M/2} & n \le M/2 \\ 0 & n > M/2 \end{cases}$ bartlett (M+1) $u[n] = \begin{cases} 1 - \frac{ n }{M/2} & n \le M/2 \\ 0 & n > M/2 \end{cases}$ bartlett (M+1) $u[n] = \begin{cases} 1 - \frac{ n }{M/2} & n \le M/2 \\ 0 & n > M/2 \end{cases}$ bartlett (M+1) $u[n] = \begin{cases} 1 - \frac{ n }{M/2} & n \le M/2 \\ 0 & n > M/2 \end{cases}$ bartlett (M+1) $u[n] = \begin{cases} 1 - \frac{ n }{M/2} & n \le M/2 \\ 0 & n > M/2 \end{cases}$ bartlett (M+1) $u[n] = \begin{cases} 1 - \frac{ n }{M/2} & n \le M/2 \\ 0 & n > M/2 \end{cases}$ bartlett (M+1) $u[n] = \begin{cases} 1 - \frac{ n }{M/2} & n \le M/2 \\ 0 & n > M/2 \end{cases}$ bartlett (M+1) $u[n] = \begin{cases} 1 - \frac{ n }{M/2} & n \le M/2 \\ 0 & n > M/2 \end{cases}$ bartlett (M+1) $u[n] = \begin{cases} 1 - \frac{ n }{M/2} & n \le M/2 \\ 0 & n > M/2 \end{cases}$ bartlett (M+1) $u[n] = \begin{cases} 1 - \frac{ n }{M/2} & n \le M/2 \\ 0 & n > M/2 \end{cases}$ bartlett (M+1) $u[n] = \begin{cases} 1 - \frac{ n }{M/2} & n \le M/2 \\ 0 & n > M/2 \end{cases}$ bartlett (M+1) $u[n] = \begin{cases} 1 - \frac{ n }{M/2} & n \le M/2 \\ 0 & n > M/2 \end{cases}$ bartlett (M+1) $u[n] = \frac{ n }{M/2} & n \le M/2 \\ 0 & n > M/2 \end{cases}$ bartlett (M+1) $u[n] = \frac{ n }{M/2} & n < M/2 \\ 0 & n > M/2 \end{cases}$ bartlett (M+1) $u[n] = \frac{ n }{M/2} & n < M/2 \\ 0 & n > M/2 \end{bmatrix}$ bartlett (M+1) $u[n] = \frac{ n }{M/2} & n < M/2 \\ 0 & n > M/2 \end{bmatrix}$ bartlett (M+1) $u[n] = \frac{ n }{M/2} & n < M/2 \\ 0 & n > M/2 \end{bmatrix}$ bartlett (M+1) $u[n] = \frac{ n }{M/2} & n < M/2 \\ 0 & n > M/2 \end{bmatrix}$ bartlett (M+1) $u[n] = \frac{ n }{M/2} & n < M/2 \\ 0 & n > M/2 \end{bmatrix}$ bartlett (M+1) bartlett (M+1) bartlett (M+1) \\ 0 & n > M/2 \\ 0 & n > M/2 \end{bmatrix}	Triangular	$w[n] = \begin{cases} 1 - \frac{ n }{M/2 + 1} & n \le M/2 \\ 0 & n > M/2 \end{cases}$	triang(M+1)	1 0.8 5 0.4 0.2 0,5 0,5 0,5
	Bartlett	$w[n] = \begin{cases} 1 - \frac{ n }{M/2} & n \le M/2 \\ 0 & n > M/2 \end{cases}$	<pre>bartlett(M+1)</pre>	bartlett(M+1), M = 8

Windows

- All of the window functions w[n] are real and even.
- All of the discrete-time Fourier transforms

$$W(e^{j\omega}) = \sum_{n=-\frac{M}{2}}^{\frac{M}{2}} w[n]e^{-jn\omega}$$

are real, even, and periodic in ω with period 2π .

• In the following plots, we have normalized the windows to unit d.c. gain:

$$W(e^{j0}) = \sum_{n=-\frac{M}{2}}^{\frac{M}{2}} w[n] = 1$$

15

This makes it easier to compare windows.

Windows (as defined in MATLAB)

