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Announcements

• Last time: 
–FFT

• Today Frequency Analysis with DFT
• Read Ch. 10.1-10.2

• Who started playing with the SDR?
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What is this?

The first NMR spectrum of ethanol 1951.
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Spectral Analysis with the DFT

The DFT can be used to analyze the spectrum of a signal.

It would seem that this should be simple, take a block of the signal
and compute the spectrum with the DFT.

However, there are many important issues and tradeo↵s:

Signal duration vs spectral resolution
Signal sampling rate vs spectral range
Spectral sampling rate
Spectral artifacts
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Spectral Analysis with the DFT

Consider these steps of processing continuous-time signals:
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Spectral Analysis with the DFT

Two important tools:

Applying a window to the input signal – reduces spectral
artifacts
Padding input signal with zeros – increases the spectral
sampling

Key Parameters:

Parameter Symbol Units

Sampling interval T s
Sampling frequency ⌦

s

= 2⇡
T

rad/s
Window length L unitless
Window duration L · T s
DFT length N � L unitless
DFT duration N · T s

Spectral resolution ⌦

s

L

= 2⇡
L·T rad/s

Spectral sampling interval ⌦

s

N

= 2⇡
N·T rad/s
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Filtered Continuous-Time Signal

We consider an example:

x

c

(t) = A

1

cos!
1

t + A

2

cos!
2

t

X

c

(j⌦) = A

1

⇡[�(⌦� !
1

) + �(⌦+ !
1

)] + A

2

⇡[�(⌦� !
2

) + �(⌦+ !
2

)]

0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

1.5

t (s)

x c
(t

)

CT Signal x
c
(t), -  < t < ,

1
/2  = 3.5 Hz, 

2
/2  = 6.5 Hz

-20 -10 0 10 20
0

0.5

1

1.5

2

2.5

3

3.5

/2  (Hz)

X
c
(j

)

FT of Original CT Signal (heights represent areas of ( ) impulses)

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal Processing

Ω

Ω

7

Sampled Filtered Continuous-Time Signal

Sampled Signal
If we sampled the signal over an infinite time duration, we would
have:

x [n] = x

c

(t)|
t=nT

, �1 < n < 1

described by the discrete-time Fourier transform:

X (e j⌦T ) =
1

T

1X

r=�1
X

c

✓
j

✓
⌦� r

2⇡

T

◆◆
, �1 < ⌦ < 1

Recall X (e j!) = X (e j⌦T ), where ! = ⌦T ... more in ch 4.
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Sampled Filtered Continuous-Time Signal

In the examples shown here, the sampling rate is
⌦
s

/2⇡ = 1/T = 20 Hz, su�ciently high that aliasing does not
occur.

0 20 40 60 80 100

-1.5

-1

-0.5

0

0.5

1

1.5

n

x[
n
]

Sampled Signal, x[n] = x
c
(nT), -  < n < , 1/T = 20 Hz

-20 -10 0 10 20
0

10

20

30

40

50

60

70

/2  (Hz)

X
(e
j
T
)

DTFT of Sampled Signal (heights represent areas of ( ) impulses)

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal Processing

ω
T

Ω

9

Windowed Sampled Signal

Block of L Signal Samples
In any real system, we sample only over a finite block of L samples:

x [n] = x

c

(t)|
t=nT

, 0  n  L� 1

This simply corresponds to a rectangular window of duration L.

Recall: in Homework 1 we explored the e↵ect of rectangular
and triangular windowing
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Windowed Sampled Signal

Windowed Block of L Signal Samples
We take the block of signal samples and multiply by a window of
duration L, obtaining:

v [n] = x [n] · w [n], 0  n  L� 1

Suppose the window w [n] has DTFT W (e j!).

Then the windowed block of signal samples has a DTFT given by
the periodic convolution between X (e j!) and W (e j!):

V (e j!) =
1

2⇡

Z ⇡

�⇡
X (e j✓)W (e j(!�✓))d✓
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Windowed Sampled Signal

Convolution with W (e j!) has two e↵ects in the spectrum:

1 It limits the spectral resolution. – Main lobes of the DTFT of
the window

2 The window can produce spectral leakage. – Side lobes of the
DTFT of the window

* These two are always a tradeo↵ - time-frequency uncertainty
principle
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Windows (as defined in MATLAB)
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Windows (as defined in MATLAB)
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Windows

All of the window functions w [n] are real and even.

All of the discrete-time Fourier transforms

W (e j!) =

M

2X

n=�M

2

w [n]e�jn!

are real, even, and periodic in ! with period 2⇡.

In the following plots, we have normalized the windows to unit
d.c. gain:

W (e j0) =

M

2X

n=�M

2

w [n] = 1

This makes it easier to compare windows.
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Window Example

0 0.5 1 1.5 2 2.5 3

-0.2

0

0.2

0.4

0.6

0.8

1

W
(e
j

)

M = 16

Boxcar

Triangular

0 0.5 1 1.5 2 2.5 3

-0.2

0

0.2

0.4

0.6

0.8

1

W
(e
j

)

M = 16

Hanning

Hamming

0 0.5 1 1.5 2 2.5 3
-70

-60

-50

-40

-30

-20

-10

0

2
0

 l
o

g
1

0
|W

(e
j

)|

M = 16

Boxcar

Triangular

0 0.5 1 1.5 2 2.5 3
-70

-60

-50

-40

-30

-20

-10

0

2
0

 l
o

g
1

0
|W

(e
j

)|

M = 16

Hanning

Hamming

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal Processing

ωω

ω ω

16


