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EE123
Digital Signal Processing

Lecture 9

based on slides by J.M. Kahn
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Announcements

• Lab 01 part I and II posted will post III 
today or tomorrow

• Lab-bash Tuesday 2-3pm 521 Cory 
• Three shorter Midterms:

– 02/26 in class
– 04/02 in class
– 04/30 (or 28 TBD) in class
– 05/05 or 05/06 (TBD) project presentations. 

•  Posters and demos
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Announcements

• Last time: 
–Frequency analysis with DFT
–Windowing

• Today:
– Continue 
– Effect of zero-padding
– Start Short-time Fourier Transform
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Windows Properties

These are characteristic of the window type

Window Main-lobe Sidelobe �
s

Sidelobe �20 log
10

�
s

Rect
4⇡

M + 1
0.09 21

Bartlett
8⇡

M + 1
0.05 26

Hann
8⇡

M + 1
0.0063 44

Hamming
8⇡

M + 1
0.0022 53

Blackman
12⇡

M + 1
0.0002 74

Most of these (Bartlett, Hann, Hamming) have a transition width
that is twice that of the rect window.

Warning: Always check what’s the definition of M

Adapted from A Course In Digital Signal Processing by Boaz Porat, Wiley, 1997
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Windows Examples

Here we consider several examples. As before, the sampling rate is
⌦
s

/2⇡ = 1/T = 20 Hz.
Rectangular Window, L = 32
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Windows Examples

Triangular Window, L = 32
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Sampled, Windowed Signal, Triangular Window, L = 32
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Windows Examples

Hamming Window, L = 32
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Hamming Window, L = 32
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Sampled, Windowed Signal, Hamming Window, L = 32
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Windows Examples

Hamming Window, L = 64
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Hamming Window, L = 64
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Sampled, Windowed Signal, Hamming Window, L = 64
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Optimal Window: Kaiser

• Minimum main-lobe width for a given side-
lobe energy % 

• Window is parametrized with L and β
– β determines side-lobe level
– L determines main-lobe width

R
sidelobes

|H(ej!)|2d!
R ⇡
�⇡ |H(ej!)|2d!

OS Eq 10.12
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Example
y = sin(2⇡0.1992n) + 0.005 sin(2⇡0.25n) | 0  n < 128
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Example
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Zero-Padding

In preparation for taking an N-point DFT, we may zero-pad
the windowed block of signal samples to a block length N � L:

(
v [n] 0  n  L� 1

0 L  n  N � 1

This zero-padding has no e↵ect on the DTFT of v [n], since
the DTFT is computed by summing over �1 < n < 1.

E↵ect of Zero Padding

We take the N-point DFT of the zero-padded v [n], to obtain
the block of N spectral samples:

V [k], 0  k  N � 1
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Zero-Padding

Consider the DTFT of the zero-padded v [n]. Since the
zero-padded v [n] is of length N, its DTFT can be written:

V (e j!) =
N�1X

n=0

v [n]e�jn!, �1 < ! < 1

The N-point DFT of v [n] is given by:

V [k] =
N�1X

n=0

v [n]W kn

N

=
N�1X

n=0

v [n]e�j(2⇡/N)nk , 0  k  N � 1

We see that V [k] corresponds to the samples of V (e j!):

V [k] = V (e j!)
��
!=k

2⇡
N

, 0  k  N � 1

To obtain samples at more closely spaced frequencies, we
zero-pad v [n] to longer block length N. The spectrum is the
same, we just have more samples.
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Frequency Analysis with DFT

Note that the ordering of the DFT samples is unusual.

V [k] =
N�1X

n=0

v [n]W nk

N

The DC sample of the DFT is k = 0

V [0] =
N�1X

n=0

v [n]W 0n

N

=
N�1X

n=0

v [n]

The positive frequencies are the first N/2 samples
The first N/2 negative frequencies are circularly shifted

((�k))
N

= N � k

so they are the last N/2 samples. (Use fftshift to reorder)
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Frequency Analysis with DFT Examples:

Hamming Window, L = 32, N = 32
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Sampled, Windowed Signal, Hamming Window, L = 32, Zero-Padded to N = 32
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Frequency Analysis with DFT Examples:

Hamming Window, L = 32, Zero-Padded to N = 64
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Sampled, Windowed Signal, Hamming Window, L = 32, Zero-Padded to N = 64
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N-Point DFT of Sampled, Windowed, Zero-Padded Signal
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http://www.neuroradiologycases.com

A 40 yo pt with a history of lower limb weakness referred for mri 
screening of brain and whole spine for cord. MRI sagittal T2 screening 
of dorsal region shows a faint uniform linear high signal at the center of 
the cord. The signal abnormality likely to represent:

(1) Cord demyelination.
(2) Syrinx (spinal cord disease).
(3) Artifact.

Answer : Its an artifact, known as truncation or Gibbs artifact
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Frequency Analysis with DFT

Length of window determines spectral resolution

Type of window determines side-lobe amplitude.
(Some windows have better tradeo↵ between
resolution-sidelobe)

Zero-padding approximates the DTFT better. Does not
introduce new information!
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Potential Problems and Solutions

Potential Problems and Solutions

Problem Possible Solutions

1. Spectral error a. Filter signal to reduce frequency content above ⌦

s

/2 = ⇡/T .

from aliasing Ch.4 b. Increase sampling frequency ⌦

s

= 2⇡/T .

2. Insu�cient frequency a. Increase L

resolution. b. Use window having narrow main lobe.

3. Spectral error a. Use window having low side lobes.

from leakage b. Increase L

4. Missing features a. Increase L,

due to spectral sampling. b. Increase N by zero-padding v [n] to length N > L.
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iSpectrum Example
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Discrete Transforms (Finite)

• DFT is only one out of a LARGE class of 
transforms

• Used for:
–Analysis
–Compression
–Denoising
–Detection
–Recognition
–Approximation (Sparse)

Sparse representation has been one of the hottest 
research topics in the last 15 years in sp
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• Spectrum of a bird chirping
– Interesting,.... but...
– Does not tell the whole story
– No temporal information!
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Example: Bird Chirp

Play Sound!
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No temporal information!
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Example of spectral analysis

x[n]

n
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•  To get temporal information, use part of the 
signal around every time point

• Mapping from 1D ⇒ 2D, n discrete, w cont.

• Simply slide a window and compute DTFT
M. Lustig,  EECS UC Berkeley

Time Dependent Fourier Transform

X[n,!) =
1X

m=�1
x[n+m]w[m]e�j!m

*Also called Short-time Fourier Transform (STFT)
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•  To get temporal information, use part of 
the signal around every time point

M. Lustig,  EECS UC Berkeley

Time Dependent Fourier Transform

X[n,!) =
1X

m=�1
x[n+m]w[m]e�j!m

*Also called Short-time Fourier Transform (STFT)
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Spectrogram
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Xr[k] =
L�1X

m=0

x[rR+m]w[m]e�j2⇡km/N

M. Lustig,  EECS UC Berkeley

Discrete Time Dependent FT

• L  - Window length
• R -  Jump of samples 
• N -  DFT length

• Tradeoff between time and frequency 
resolution
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Heisenberg Boxes

• Time-Frequency uncertainty principle ht
tp
://
w
w
w
.jo
na
sc
la
es
so
n.
co
m
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�! =
2⇡

N

�t = N

�! ·�t = 2⇡
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DFT

X[k] =
N�1X

n=0

x[n]e�j2⇡kn/N

!

t
one DFT coefficient
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